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In recent years, accurate 3D detection plays an important role in a lot of applications. Autonomous driving, for
instance, is one of typical representatives. This paper aims to design an accurate 3D detector that takes both Li-
DAR point clouds and RGB images as inputs according to the fact that both LiDAR and camera have their own
merits. A deep novel end-to-end two-stream learnable architecture, CrossFusion Net, is designed to exploit fea-
tures from both LiDAR point clouds as well as RGB images through a hierarchical fusion structure. Specifically,
CrossFusion Net utilizes bird's eye view (BEV) of point clouds through projection. Besides, these two feature
maps of different streams are fused through the newly introduced CrossFusion(CF) layer. The proposed CF
layer transforms feature maps of one stream to another based on the spatial relationship between the BEV and
RGB images. Additionally, we apply attention mechanism on the transformed feature map and the original one
to automatically decide the importance of the two feature maps from the two sensors. Experiments on the chal-
lenging KITTI car 3D detection benchmark and BEV detection benchmark show that the presented approach out-
performs the other state-of-the-art methods in average precision(AP), specifically, as well as outperforms
UberATG-ContFuse [3] of 8% AP in moderate 3D car detection. Furthermore, the proposed network learns an ef-
fective representation in perception of circumstances via RGB feature maps and BEV feature maps.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Thanks to the rapid development of intelligent vehicles, autonomous
driving becomes a popular issue in recent years. The most important
issue for autonomous driving is to understand the surroundings of a ve-
hicle, and one crucial key is 3D detection. By reasoning the surroundings
of vehicles in 3D detection, the system can make the correct decisions
under various kinds of situations. Nowadays, many of intelligent vehi-
cles are equipped with multiple sensors at the same time, such as cam-
eras, LiDAR and Inertial measurement unit (IMU). This motivates
researchers to combinedifferent sensors to conduct 3Dobject detection.
In this work, the authors aim to design an accurate and stable 3D detec-
tor which is based on cameras and LiDARs. The effective fusion of RGB
images and LiDAR point clouds should be capable of supplying much
richer information.

Although 2D object detection has achieved great success on famous
datasets, such as ImageNet [6], MS COCO [8] and KITTI [10], the 3D ob-
ject detection remains an open problem because of an additional
depth information. In most of the case, 2D object detectors, such as
YOLO [12], Fast R-CNN [14], take only RGB images as inputs. However,
the lack of depth could be a fatal flaw which leads to coarse results in
3D object detection. Hence, we propose a fusion-based network that
takes advantages of mature 2D object detection methods. With the
presence of LiDAR point clouds, the network is able to learnmore repre-
sentative information. Besides, each sensor has its own merits. Specifi-
cally, LiDAR is effective at providing depth information under various
weather conditions while suffering from distant details. On the other
hand, the camera preserves the detailed information of the front-view
while suffering from various weather conditions. The purpose of this
work is on 3D object detection that exploits both RGB images and
point clouds in the on-road scene. Specifically, the study focuses on
combining different sensors beneficial to each other.

Recently, some novel image-based methods explored the use of
monocular [1,15–17] or stereo [2,4] images. Images usually provided
detailed and dense measurements of front-view. However, these
methods were limited by the loss of depth information. On the other
hand, LiDAR based 3D object detectionmethodswere rapidly developed
afterwards. LiDAR broughtway accurate depth information applying ef-
fective use of localization and shape description. Nevertheless, the point
clouds were unordered and sparse. To deal with this problem, VoxelNet
[7] and PointNet [19] grouped the points into voxel grids. Simony et al.
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[9] and Yu et al. [20] projected point clouds to a ground such as bird's
eye view(BEV) or front-view to avoid high computational cost of 3D
convolution. In addition, the PointNet [19] directly processed point
clouds through their permutation invariance. However, LiDAR suffered
from distant detection due to its natural defects. As to fusion both RGB
images and LiDAR point clouds methods, the ContFuse [3] successfully
combined two streams of feature maps in different combinations of
fusion.

The proposed CrossFusion Net is a 3D object detection network that
takes RGB images and point clouds as inputs to make a valid use of both
cameras and LiDARs. The presented CrossFusion Net is an end-to-end
trainable architecture and capable of predicting accurate 3D bounding
boxes. In addition, the novel CrossFusion layer enables the fusion be-
tween two streams of featuremaps fromdifferent sensors in a cascading
way. Through projecting all the points and pixels to its absolute coordi-
nate in a 3D space, feature maps from different sensors could be passed
to the other. Thus, by avoiding computational-cost 3D convolution, the
3D space relationship is kept between two kinds of featuremaps during
the CrossFusion layer. The presented network is evaluated by the tasks
of both the 3D detection and the BEV detection benchmarks based on
the popular KITTI on-road dataset. In this paper, the remaining parts
are organized as follows. Section II introduces related works about
RBG image based, point cloud based and fusion based methods to
achieve 3D detection task. Section III mentions the formulation of the
target task. Section IV proposes the overall architecture of the method.
Section V elaborates the details of the proposed components.
Section VI presents the experiments on the KITTI road dataset. Finally,
Section VII gives a conclusion of the presented method.

2. Related works

The 3D object detection is a crucial part of intelligent transportation
systems. Many works focusing on this topic come up with their solu-
tions. After reviewing the existing works on the 3D object detection,
they are basically divided into the following three categories according
to the inputs.

2.1. RGB image based

RGB images provide texture and brightness information of the front-
view in the formof pixel intensity; some researchworks directly predict
3D bounding boxes through RGB images. The 3DOP [21] inferred depth
information according to stereo images and utilized mature R-CNN [22]
structure to conclude the final prediction among the proposals. The Ste-
reo R-CNN [2] extended Faster R-CNN [23] for stereo inputs to simulta-
neously detect images in all the views. The Pseudo-LiDAR [4] converted
image-based depth maps to pseudo-LiDAR representations in order to
mimic LiDAR signals and achieve impressive performance. However, it
was hard to localize bounding boxes accurately due to the lack of
depth information, especially in monocular images. The RGB image-
based methods appeared relatively poor performance due to the pixel
intensity being possible to vary under different appearances. However,
it could provide distant information due to the innate advantages of
cameras. As a result, by combining RGB images with point clouds, the
presented method significantly improves the performance of 3D
detection.

2.2. Point cloud based

LiDAR becomes an eye-catching sensor due to the rapid growth of
sensing technology. Moreover, point clouds have some unique charac-
teristics comparing to RGB images. One major difference is that point
clouds are discrete and unordered. Both of the works of Yan et al. [5]
and Zhou et al. [7] first grouped point clouds to voxel grids in 2018.
VoxelNet [7] processed voxelwise representation via 3D convolution,
which was known for its computational cost. Yan et al. [5] modified
VoxelNet by applying sparse 3D convolution to achieve faster inference
speed. Instead of grouping all the point clouds to voxel grids, PointNet
[19] directly consumed point clouds and cleverly exploited the permu-
tation invariance of points. Another way to deal with the preprocessing
of point clouds was based on projection. VeloFCN [24] successfully
projected the point clouds to front view and apply 2D fully
convolutional network(FCN) [25] to reason 3Ddetection. The projection
inevitably encountered information loss or distortion due to the data
quantization along the projection axis. In this paper, the point clouds
are projected to BEV and a channel of BEV maps is utilized to preserve
the height information. In addition, the loss of projection is compen-
sated by fusion with rich features of RGB images through the novel pro-
posed CrossFusion layer.

2.3. Fusion based

As we known, only few works take both RGB images and LiDAR
point clouds as inputs simultaneously. Qi et al. [18] presented the use
of mature 2D objection detection in 2018. Those candidate bounding
boxes proposed by 2D detector were then lifted to 3D frustum, and
points inside the frustum were used to infer 3D detection results. In
this case, the performance was bounded by 2D detector especially in
highly occluded or truncated samples. Before then, the MV3D network
[13] exploited the BEV, the front view of LiDAR point clouds and RGB
images at the same time. The 3D object proposals were generated ac-
cording to the BEV feature map and the corresponding feature of these
inputs were appended together to infer 3D detection. As a consequence,
this kind of fusion often made high-level feature being fused success-
fullywhile the low-level oneswere neglected. Also in 2018, the deep fu-
sion of the ContFuse [3] ingeniously designed a two-stream model,
namely the RGB image stream and the BEV LiDAR stream. The feature
maps of RGB images were fused onto the BEV feature maps in a cascad-
ingway. However, the fusion during the processwas only a one-way fu-
sion, which caused the lack of the symmetry between these two
streams. In this work, we aim to design a symmetric two-stream net-
work fusing between the RGB images and the BEV LiDAR point clouds.
Additionally, the attention mechanism is applied between the two
streams of feature maps to bring the two feature maps into a full play.

3. Problem formulation

The presented deep learning network simultaneously absorbs both
RGB inputs of the images and the point clouds. The input RGB images
can be represented as a set of integer pixel values V, where V = {vij |1
≤ i ≤ h, 1 ≤ j ≤ w}, h symbolizes the height and w stands for the width
of images as well. Each element vij in the image is an integer within
the range of [0, 255]. On the other hand, a point cloud can be parame-
trized as a set of points PC, where PC = {Ps |s = 1, 2, …n} and n repre-
sents the number of points in a point cloud. Furthermore, each point P
is composed of a tensor of (x,y,z, r), where (x,y,z) is the coordinate
with regard to the origin of coordinate systemwhile r stands for the re-
flectiveness of the point P.

Given RGB images and point clouds as inputs, the goal is to predict
accurate 3D detection which comprises both targets of localization
and classification. Besides, the calibration matrix projecting a point
cloud to the corresponding RGB image coordinate is known as another
input parameter. The outputs of the network can be denoted as a set
of 3D bounding boxes BBox, where BBox = {Bk |k = 1, 2, …M} and M
symbolizes the number of 3D bounding boxes. Each 3D bounding box
B, is denoted as (x,y,z,w,h, l,Θ,class), where (x,y,z) represents the cen-
ter of the bounding box while (w,h, l) depicts the sizes of the bounding
box. It is noteworthy that the unique assumption of the yaw rotation is
measured by Θ. As for the class, it is a one-hot vector representing the
possibility of the class and the bounding box belongs to.

Finally, the overall formula of the detection task Tdet can be denoted
as



3D.-S. Hong et al. / Image and Vision Computing 100 (2020) 103955
Tdet V ; PCð Þ ¼ BBox ¼ Bkf j k ¼ 1;2;…;M ð1Þ

The goal is to propose a detection network which can generate the
3D bounding box BBox from the given RGB image V and the point
cloud PC.

4. CrossFusion net

As more and more intelligent vehicles are equipped with both cam-
eras and LiDARs, the CrossFusion Net is proposed to exploit the pros of
these two different sensors. As shown in Fig. 1, the CrossFusion Net
takes an RGB image and a point cloud to conduct the 3D object detec-
tion. Recently, Mono3D [1], Stereo R-CNN [2], Pseudo-LiDAR [4] and
SECOND [5] have performed impressive results on 2D object detection
based on RGB image feature maps. In contrast, Simony et al. [9] and Li
et al. [24] achieved exceptional outcomes on 3D object detection
based on the BEV feature maps. Due to the fact that the RGB image fea-
ture maps and the BEV feature maps are fit for 2D and 3D detection, re-
spectively, the presented CrossFusion Net is designed to generate 3D
proposals from the BEV feature maps which are more tightly fused
with the RGB image feature maps within different levels.

4.1. Data preprocessing - encoding of point clouds

The raw3Dpoint clouds preserve the richest information in the form
of a set of points. These points originally save the structure of the sur-
roundings. However, nearly 100 k points are sparsely located over the
whole 3D space.Moreover, the density across thewhole 3D space varies
from case to case. Taking these factors into consideration, it is inefficient
inmemory to directly process a rawpoint cloud as it usually often needs
more complicated computation such like 3D convolution. Instead, an-
other way to process a point cloud is to project it onto the BEV. Inspired
by otherworkswhich also adopted point clouds as inputs, the points are
removed out of the predefined region of interest(ROI). In the experi-
ments, the ROI is set in the 3D LiDAR space with X = (0,80), Y =
(−40,40), and Z = (−2,1.25). Any LiDAR point which is out of the
given range will be removed; then the remaining points are projected
onto the BEV with resolution limiting the BEV within size of
1024 × 1024. In other words, the BEV is subdivided into 1024 × 1024
Fig. 1. Overview of the prop
grids. Particularly, the BEV is encoded as the form of height, reflectance
and density, respectively. The coordinate and reflectance of the upmost
point alongwith the corresponding density are recorded in each grid. In
addition, the heightmap is normalized by dividing the height of ROI and
also the density map is normalized as stated in Complex-Yolo [9].

4.2. CrossFusion layer

Fusion data between a point cloud and an RGB image is a challenging
task. Eitel et al. [26] and Gupta et al. [27] exploitedmature 2D detection
frameworks with additional depth information by a projection manner
to infer 3D detection. With a normal calibration projection matrix, the
projection from a point cloud to an RGB image could be accomplished.
This could be beneficial to the 2D detection. However, it still needed
some modifications to successfully reason the 3D detection.

On the contrast, ContFuse [3] performed an exactly opposite fusing
operation. It unprojected the BEV to RGB camera space and utilized
the different levels of feature maps of the RGB images to realize the fus-
ing operation. In this paper, we combine andmodify these twomethods
of fusion mechanism and propose the CrossFusion layer for acting as a
bridge between these two streams. As illustrated in Fig. 1, the fusion be-
tween the BEV and the image is performed in a cross way. With the aid
of the presented CrossFusion layer, the spatial relationship between
RGB images and point clouds can be fully connected together while
avoiding time-consuming 3D convolution. The comprehensive details
of the cross way fusion is described in the Section 5.

4.3. Loss function

From the aforementioned problem formulation, a 3D bounding box
B can be parametrized as (x,y,z,w,h, l,Θ,class). As the anchor boxes
[14] have shown the great progress on 2D and 3D detection, they are
applied to the proposed CrossFusion network. Inspired by [14,28], the
k-means on KITTI training dataset is performed to obtain the represen-
tative anchor boxes. Assume that there are Npos positive anchor boxes
and Nneg negative anchor boxes, while preparing anchor boxes from
the ground truth, the positive samples and the negative samples can
be balanced by randomly sampling from them if they are more than a
predefined threshold. Note that only the positive anchor boxes are
valid for regression. To fetch back the prediction from the corresponding
osed CrossFusion Net.



Fig. 2. Preprocessing of the relationship between (a) RGB image and (b) LiDAR points.
(c) storing 3D LiDAR points that will be projected on left camera coordinate, as depicted
in (b).
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regression tensor Tr, Tr is defined as (Δx,Δy,Δz,Δw,Δh,Δl,ΔΘ), where
Δx, Δy and Δz denote the regression for the center of a bounding box,
Δw, Δh and Δl represent the regression size of a bounding box and ΔΘ
stands for the regression for yaw rotation. Here, Δx, Δy and Δz are
encoded as

Δc ¼ cg−ca
e

ð2Þ

where subscript g denotes ground truthwhile subscript a stands for the
anchor boxes. Besides, c∈ {x,y,z} and e∈ {w, l,h}, respectively. In this sit-
uation, Δw, Δh and Δl are encoded as

Δs ¼ sg
sa

ð3Þ

where s ∈ {w,h, l}. As to ΔΘ, it can be encoded as

ΔΘ ¼ Θg−Θa ð4Þ

The Total loss Lt is defined as:

Lt ¼ 1
N
Lcls ya; yg

� �
þ α

1
Npos

Lreg Ta
r ; T

g
r

� � ð5Þ

where N represents the total number of samples. Namely,
N = Npos + Nneg, yg denotes a binary class label while ya stands for the
prediction score output by softmax. α is a hyper parameter which con-
trols the ratio of these two terms. Lcls symbolizes typical binary cross-
entropy loss which can be expressed as

Lcls ya; yg
� �

¼ −
X

yg log yað Þ þ 1−yg
� �

log 1−yað Þ ð6Þ

On the other hand, Lreg represents smooth L1 loss [14] which is
defined as

Lreg ¼
0:5Ta

r−Tg
r
2
;

if Ta
r−Tg

r

�� ��b1 Ta
r−Tg

r

�� ��−0:5;
else:

8>><
>>:

ð7Þ

5. Elaboration of CrossFusion layer

In order to fully exploit the potential of features of BEV images and
RGB images and make them benefit each other, the proposed
CrossFusion layer transforms the features from one to the other on the
basis of their spatial relationship. In the following Subsections, the de-
tails of the CrossFusion layer are specified.

5.1. Mathematical formulation of CrossFusion layer

The proposed CrossFusion layer transforms the RGB image feature
map and the BEV image feature map between each other at the same
time as shown in Fig. 1. The task of fusion between the RGB images
and the point clouds is composed of two operations, one from image
to BEV(FI2B) TCF_FI2B and the other from BEV to image(FB2I) TCF_FB2I.
Also, these two operations are performed simultaneously along with
each convolutional block in the backbone network. The RGB image fea-
ture maps are denoted as FRGB and the BEV image feature maps as FBEV.
After the transformation on the basis of their spatial relationship, BEV
image feature maps and RGB image feature maps are encoded as F′BEV
and F′RGB. Last but not the least, the transformed feature maps and the
original feature maps are executed with elementwise attentionally ad-
dition denoted as⨁. With the help of attentionmechanism, two sources
will benefit each other. As a result, the entire formula of the CrossFusion
layer is listed as follows.
TCF FI2B FRGBð Þ ¼ F0BEV⨁FBEV

TCF FB2I FBEVð Þ ¼ F0RGB⨁FRGB

8<
: ð8Þ

5.2. Preprocessing between RGB images and LiDAR points

As shown in Fig. 2, a map is adopted to save the LiDAR points due to
mapping from RGB image to LiDAR coordinate being inevitable in the
CrossFusion Net. As we known, there is no way to un-project a 2D
RGB pixel to the corresponding LiDAR spacewithout depth information.
On the contrary, projecting a LiDAR point cloud onto the corresponding
RGB image is a normal and practical scheme. In this case, for each image
and LiDAR point cloud, the first step is to initialize an empty map with
the same size as the RGB image. Secondly, a projection from the LiDAR
point cloud onto the RGB image is achieved. Finally, themap preserving
the coordinate of the point is projected onto the map. Considering that
the projectedpointmight not exactlymatch a certain integer coordinate
in the RGB image in most of the cases, the projected point is directly
rounded to integer for efficiency.

5.3. From image to BEV(FI2B)

As depicted in Fig. 3, the RGB image featuremaps are transformed to
the shape of the BEV image featuremaps based on their spatial relation-
ship instead of brute reshaping. Thereby, the elementwise attention is
applied onto the two featuremapswith a same shape but fromdifferent
sources. As illustrated in Fig. 5, to decide the weights between two
sources, a 1 × 1 convolution layer and a softmax layer is applied to



Fig. 3. Steps from image to BEV(FI2B) of the proposed CrossFusion layer: (Step 1) There are T neighbors determined from the corresponding anchor box. (Step 2) Next, these LiDAR points
are projected onto theRGB image. (Step 3) Select the boundingbox based on these LiDARpoints. (Step 4) Take the boundingbox and theRGB image featuremaps as the inputs of ROI align.

Fig. 5. Processing steps of generating elementwise weights between two feature maps. A
1 × 1 convolution is applied for dimension reduction and a successive softmax is utilized
on each pixel location to construct the weights of two sources.
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produce the elementwiseweights for the following addition operations.
Also, the type of the adopted attentionmechanism in our network is the
most basic one. Because that from our experiments, different types of
attention mechanisms give only less than 1% performance differences.
Each pixel of the BEV featuremaps is enumerated and picked out.With-
out loss of generality, the reception field of a pixel of the BEV feature
maps is assumed to represent the compressed information inside the
union of anchors. Hence, the points inside the anchors are targeted. In
practice, the T points inside the multiple anchors are randomly selected
out. Given that in some cases, the points inside themultiple anchors are
less than T, they can be increased up to T by appending the nearest
points with respect to the center of the multiple anchors. Then, these
T points are projected onto the 2D image coordinate, and the bounding
box is selected so that it can exactly cover these T points. However, these
points might not exactly match the integer image coordinates. For this
reason, according to the Mask R-CNN [29], given the bounding box
and the corresponding feature maps, the ROI align is applied to deal
with such amismatch problem. The bounding box of the corresponding
feature maps are further pooled into 1 × 1 to get the representative la-
tent features of the RGB image feature maps. By visiting every pixel of
the BEV feature maps and repeating the same procedure, the RGB
image feature maps are transformed to the shape in a same way with
the BEV feature maps. Now the attention mechanism can be employed
on the transformed feature maps and the RGB image feature maps
since they are with the same shape. With the benefit of the attention
of two feature maps from two sources, each sensor is brought into
full play.

5.4. From BEV to image(FB2I)

As illustrated in Fig. 4, the BEV feature maps are transformed so that
their shapes should be the same as those of the RGB image featuremaps.
Each pixel in the RGB image feature maps represents a certain size of
grid of the original image according to the reception field. The size of
the reception field varies from different stages of the feature maps and
the encoders such as VGG Net [30], ResNet [31], etc. As the reception
field of a pixel in the image featuremaps is known, the pixel can be enu-
merated in the original imagewhichbelongs to the receptionfield in the
image feature maps. The goal here is to find the 3D coordinate for each
pixel. However, it is impossible to project from image coordinate to 3D
space as the lack of depth information of camera. Instead, projecting a
Fig. 4. Steps of from BEV to image (FB2I) of the proposed CrossFusion layer: (Step 1) The re
preprocessing map is utilized to map the pixel to LiDAR coordinate. (Step 3) Project the poin
feature maps as the inputs of ROI align.
point cloud onto the camera coordinate is a feasible way. Thereby, for
each pixel in the original image, the preprocessing 2D map is exploited
to record the projecting relationship between the pixel in the image and
the corresponding LiDAR points. Once the mapping relationship in the
reception field of the RGB feature maps has been obtained, the location
of each RGB image pixel in the BEV coordinate can be calculated as how
the BEV is performed from point clouds. The bounding box is utilized to
exactly determine an enclosed rectangle. As a result, the reception of an
RGB feature map pixel could bemapped to the enclosed area in BEV via
the above transformation. In addition, the ROI align is leveraged to cope
with mismatch problems in the RGB image feature maps. Specifically,
the whole enclosed rectangle and the RGB image feature maps are fed
into ROI align together and are pooled into 1 × 1 to get the representa-
tive latent features of the BEV featuremaps. By visiting every pixel of the
RGB image feature maps and repeating the same procedure, the BEV
feature maps are transformed to the shape in a same way with the
RGB image feature maps. Furthermore, the attention mechanism can
be exploited to the transformed feature maps and the BEV feature
maps since they are with the same shape. Thereby, the RGB image fea-
ture is fused with the BEV feature in a spatially reasonable way.
ception field of the pixel is targeted in the RGB image feature maps. (Step 2) Then the
ts onto BEV and select the bounding box. (Step 4) Take the bounding box and the BEV



Fig. 6.Detection results of CrossFusion Net on KITTI dataset. (a)(c) are the same detection results from two sensors for a frame, while (b)(d) represent those for another frame.We project
the results onto both image view and LiDAR space for visualization.

Fig. 7. Visualized attention maps of the CrossFusion Net on KITTI dataset. (a)(b) are
original images, while (c)(d) represent the attention maps for the RGB stream.
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5.5. Backbone network

In order to exploitmature technique of 2D detection, the ResNet50 is
selected to be pre-trained on ImageNet as the backbone network. The
feature maps generated by the bottleneck layers in the ResNet50 is
exploited to group in 3,4 and 6. The dimensions of the feature maps
are 256, 512 and 1024, respectively. Note that the width and height of
the feature maps decrease to half after each grouped bottleneck layers.
5.6. Anchors setting

In 2D detectors, anchor boxes show that it ismore efficient to regress
boxes from the prior boxes rather than from the scratch. In this work,
we modify the typical anchors with some key extensions. A set of
prior 3Dboxes is defined in BEV,which lies in LiDAR coordinate. Besides,
the dimensions and the yaw rotation of the anchors are determined
through k-means. Experimentally, it is observed that setting k = 2 can
preserve the critical balance between the computational complexity
and the performance.
6. Experimental results of the crossfusion net

The presented network is trained and tested on a personal computer
with single NVIDIA GTX 1080 Ti GPU. The experiments are divided into
three parts. Firstly, it begins with conducting the experiments on the
challenging KITTI dataset. Secondly, an ablation study is given to evalu-
ate the contribution of each proposedmethods. Finally, the quantitative
and qualitative visualization results are demonstrated by projecting the
3D bounding boxes onto 2D images. Moreover, the power and the lim-
itations of the presented CrossFusion Net will be discussed.

6.1. KITTI object detection benchmark

The proposed CrossFusion Net has been evaluated on the KITTI ob-
ject detection benchmark including the 3D object detection and the
BEV detection tasks. In this benchmark, there are 7481 training data
and 7518 testing data comprising images, point clouds and calibration
files. The images are collected by a camera mounted on the top of a
car, and the point clouds are sensed by a 3D laser scanner (Velodyne
HDL-64E). In addition, each frame can be further categorized into
three types of easy, medium and hard, which are classified separately,
based on the distance, occlusion level and truncated level.

Moreover, the 3D detection results are verified by submitting to
KITTI official test server. The Average Precision (AP) with 11 points is
applied as the evaluation metric for both 3D object detection and BEV
detection. Note that only the threshold of IOU is set to 0.7 in class Car.
Other classes are set to 0.5. The proposed CrossFusion Net is also com-
pared with other state-of-the-art methods in the car detection based
on both 3D and BEV. These top-performing methods can be divided
into three categories as mentioned in Section II of Related Works, in-
cluding monocular or stereo image-based methods [1,2,4], LiDAR-
based methods [5,7,9] and fusion-based methods [3,11,13,18].

6.1.1. Evaluation of 3D detection
The experimental results of the 3D detection on KITTI testing dataset

is shown in Table 1. This task is more challenging than the BEV task
since not only theflat localization issue but also the parameters of object
height are crucial. For the 3D detection, the proposed method outper-
forms other methods in mAP.

6.1.2. Evaluation of BEV detection
The BEV detection results are compared with other state-of-the-art

methods as shown in Table 1, which illustrates the accuracy comparison



Table 1
Resultant Average Precisions (in %) of 3D Detection on KITTI Dataset.

Method Type of inputs 3D AP BEV AP

Easy Moderate Hard Easy Moderate Hard

Mono3D [1] Monocular 2.53 2.31 2.31 5.22 5.19 4.13
Stereo R-CNN [2] Stereo 49.23 34.05 28.39 61.67 43.87 36.44
Pseudo-LiDAR [4] Stereo 55.40 37.17 31.37 66.83 47.20 40.30
SECOND [5] LiDAR 83.13 73.66 66.20 88.13 79.40 77.95
VoxelNet [7] LiDAR 81.97 65.46 62.85 81.97 65.46 62.85
Complex-YOLO [9] LiDAR 55.63 49.44 44.13 76.62 67.14 65.92
AVOD [11] Image+LiDAR 73.59 65.78 58.38 86.80 85.44 77.73
MV3D [13] Image+LiDAR 66.77 52.73 51.31 86.02 76.90 68.49
UberATG-ContFuse [3] Image+LiDAR 82.54 66.22 64.04 88.81 85.83 77.33
F-PointNet [18] Image+LiDAR 81.20 70.39 62.19 88.70 84.00 75.33
Ours Image+LiDAR 83.20 74.50 67.01 88.39 86.17 78.23

7D.-S. Hong et al. / Image and Vision Computing 100 (2020) 103955
of the ability of localization. The proposed method gives best results in
both case of Moderate and Hard among all of these top-performing
methods.

6.1.3. Inference time
The resultant inference time of the proposed network is comparable

with other methods, as depicted in Table 3, that regarding point clouds
and RGB images as their inputs. From Table 3, our inference time of
100 ms is much less than that of Ref. [13,18], but only little more than
those of Ref. [3,11]. Note that our framework inherently targets at pro-
viding outperformance in 3D detection in comparing with other state-
of-the-art networks.

6.2. Ablation study

There aremainly three components that fuse two types of data in the
presented CrossFusion Net, including FI2B, FB2I and attention mecha-
nism. FI2B transforms the feature maps of RGB images stream to the
shape of the BEV image feature maps based on the spatial correlation.
Likewise, FB2I performs the same concept as FI2B with exactly opposite
direction of data flow. Attentionmechanism enables the network adap-
tively to learn the dynamically weighted features from two types of fea-
ture maps. To further explore the importance of these three
components, conducting an ablation study is needed. Because of the
limited submission policy of KITTI test server and the lack of the anno-
tated ground truth of testing data, the presented ablation study is car-
ried out exhaustively on the KITTI validation set. The protocol
proposed in [13] is followed to split the training set and the validation
set approximately on a fifty-fifty basis, which leads to adopt 3712 train-
ing frames and 3769 validation frames. This protocol prevents from
sampling the same sequence involved in both the training set and the
validation set.

Moreover, a bare BEV model without the aid of RGB images is dealt
with in this study. In other words, only one stream of the proposed
CrossFusion Net is activated. A second model is derived from the joined
FB2I. This procedure allows the information of the BEV stream being
passed to the RGB images stream. Besides, the attention mechanism is
Table 2
Resultant Average Precisions (in %) of 3D Detection on KITTI Validation Set for Ablation
Study.

Method Type of inputs 3D AP

Easy Moderate Hard

Bare BEV stream (model 1) LiDAR 78.02 66.72 61.37
FB2I (model 2) Image + LiDAR 81.45 69.96 63.98
FB2I + attention (model 3) Image + LiDAR 82.38 70.44 65.01
FI2B + FB2I (model 4) Image + LiDAR 84.49 71.36 66.03
FI2B + FB2I + attention (model 5) Image + LiDAR 86.11 72.29 67.95
unified on the second model as the third model. Both FI2B and FB2I
are employed together to become the fourth derived model. The fusion
between these two streams is bidirectional in the model. Finally, the
three components are combined as the last derived model. From
Table 2, themodel with all of the three components leads to the best re-
sults. The fourth model confirms the assumption that if two feature
maps are brutally added together, it is hard for two input sources to
benefit each other under strict conditions such as rainy scenes. With
the favor of attention mechanism, it can help boost the performance. If
attention is applied to the original feature maps without transforming
them through FI2B and FB2I, the performance drops since the pixel-
wise locations on two feature maps are not aligned together in the
space. Therefore, the last model is concluded as the final version in
this study and adopted to compare the model with other state-of-the-
art methods.
6.3. Qualitative results and discussion

As shown in Fig. 6, by visualizing the results originally being set in
the 3D camera coordinate through projecting the bounding boxes
onto 2D image coordinate, some cases seem difficult to be predicted
with only one source of data being the RGB image or the LiDAR point
clouds. These cases are hard even for a human to infer the output such
as parallel parked cars or severely occluded cars. Surprisingly, some of
these types of data are trivial cases in the other source of data. It reminds
that two sensors, cameras and LiDARs, can be placed in different posi-
tions on the car, namely, the occlusion is able to be decreased through
the union of two different sensors. Most of all, through the proposed fu-
sion mechanism in CrossFusion Net, the two types of feature maps will
benefit each other. Consequently, all the models with the contribution
of fusion outperform those without fusion as appeared in the results
of the ablation study. In addition, attention maps of the RBG stream
are visualized as depicted in Fig. 7. The attention weights are obviously
dominated at the pixels which represent the cars in the images. As a re-
sult, the elementwise attentionally add of the proposed CrossFusion
layer as shown in Fig. 1 can successfully fuse two feature maps specifi-
cally at foreground locations in order to make two sensors benefit
with each other.
Table 3
Resultant Inference Time of 3D Detection on KITTI Dataset.

Method Inference Time (ms)

AVOD [11] 80
MV3D [13] 360
UberATG-ContFuse [3] 60
F-PointNet [18] 170
Ours 100
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7. Conclusions

A novel end-to-end trainable fusion-based 3D object detection net-
work, CrossFusion Network, is presented to take both RGB images and
point clouds as inputs. Most of the existing fusion-based methods for
3D object detection do not fully take advantages of the spatial relation-
ship between RGB images and point clouds. In this paper, the developed
fusion method, CrossFusion layer, acts as a bridge between the RGB
image feature maps and the BEV feature maps according to their abso-
lute coordinate in 3D space. The CrossFusion layer plays an important
role on each stage of the feature maps, which transforms one feature
maps to the shape of another based on the spatial relationship. In addi-
tion, attention mechanism is applied on fusion to enable the network
adaptively to choose the weights from the two sources of features. The
experiments based on the KITTI dataset show the exceptional ability
of the presented network in both 3D and BEV detection benchmarks
over other state-of-the-art methods. Moreover, as the proposed
CrossFusion layer is applied on feature-level, using other stronger fea-
ture extractor such as ResNet-101 or ResNext-101 is expected to be an
alternative way to obtain better performance. Accordingly, the
CrossFusion layer will continue to be further modified to fuse the raw
point clouds and the RGB images based on various advanced architec-
tures in our future research work.
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