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In recent years, Autonomous Driving Systems (ADS) becomemore andmore popular and reliable. Roadmarkings
are important for drivers and advanced driver assistance systems by better understanding the road environment.
While the detection of roadmarkings may suffer a lot from various illuminations, weather conditions and angles
of view, most traditional road marking detection methods use fixed threshold to detect road markings, which is
not robust enough to handle various situations in the real world. To deal with this problem, some deep learning-
based real-time detection frameworks such as Single Shot Detector (SSD) and You Only Look Once (YOLO) are
suitable for this task. However, these deep learning-basedmethods are data-driven evenwhile there is no public
road marking dataset. Besides, these detection frameworks usually struggle with distorted road markings and
balancing between the precision and recall. We propose a two-stage YOLOv2-based network to tackle distorted
roadmarking detection aswell as to balance precision and recall. The proposed spatial transformer layer is able to
handle the distorted road markings in the second stage, so as to achieve the improvement of precision. Our net-
work is able to run at 58 FPS in a single GTX1070under diverse circumstances. Furthermore,we present a dataset
for the public use of road marking detection tasks, which consists of 11,800 high-resolution images captured
under different weather conditions. Specifically, the images are manually annotated into 13 classes with
bounding boxes. We empirically demonstrate both mean average precision (mAP) and detection speed of our
system over several baseline models.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Thanks to the rapid development of intelligent vehicles, Autono-
mous Driving Systems (ADS) and Advanced Drive Assistance Systems
(ADAS) play crucial roles in autonomous driving. The most important
issue for these systems is to understand the surrounding environment
in real-time. By doing so, the system can make the correct decisions
under various kinds of situations. The road markings (RMs) are those
important symbols painted on each lane of roads. The main purposes
of road markings are guiding drivers to choose the correct lane before
the intersection and providing necessary information of the road for
drivers. Even if the driver uses an autonomous navigation system such
as google map, the road markings are still crucial for the driver making
correct decisions.

Although roadmarking can provide some deterministic information
for autonomous navigation systems, ADS and ADAS, better understand-
ing the road environment, the detection of roadmarkings still remains a
challenging problem. There are several difficulties in road marking
detection tasks. Firstly, road markings are painted on the surface of
roads, that the different angles of view will cause a totally different
shape of the same road marking. Different dashboard cameras and dif-
ferent mounting positions of the dashboard cameras may cause differ-
ent perspective distortions in the image. The camera parameters are
not fixed in different real situations. Secondly, various illuminations
andweather conditionsmay also lead to large variations in the visibility
of road markings. For example, the colors of road markings reflect
different colors of streetlights or other lights in the evening. Last but
not least, large amounts of road markings on the road are already dam-
aged after years of use. The detection system needs to handle blurred
road markings, which can be caused by the road marking itself or the
rain on the windshield. In this paper, we focus on solving the first and
the second challenges by a novelty architecture that alleviates the dis-
tortion and self-collected dataset consisting of a great variety of urban
scenes with different illuminations and weather conditions.

Current roadmarking detection systemsmostly use traditional low-
level features to process the image, like binarization, edge detection,
color segmentation, etc. Thesemethodsmay performwell in specific sit-
uations or small datasets, but it is hard to deal with intense illumination
changes or heavy rain. For example, imagine a case that the streetlights
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Fig. 1. Illustration of the proposed road marking detection network. The network consists
of two stages. The first stage roughly predicts the bounding boxes and classes of road
marking while the second stage reclassifies those bounding boxes with low confidence.
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are yellow and the stop light of the front car is red, thewhite roadmark-
ing might reflect these colors to lead to failure of color segmentation.
Besides, the rain drops on thewindshieldmay also blur the image, lead-
ing to the failure of edge detection.

Inverse perspective mapping is a method often used for eliminating
perspective distortions. However, the camera parameters which are
used for performing inverse perspective mapping may vary from time
to time in real world cases. Considering all these issues, traditional
low-level feature-based methods are not robust enough to perform ac-
curate road marking detection under complex situations in real world.

It is noteworthy that the current deep learning method such as
Convolutional Neural Network (CNN) has become a powerful solution
to the object detection problem. Classification architectures such as
AlexNet [25] and Inception [32] achieve great success on large-scale
dataset. Detection framework like Faster R-CNN [1] and Fast R-CNN
[33] show their powerful detection results on PASCAL VOC [2] dataset.
Among these approaches, Faster R-CNN abandons traditional selective
search [34] and adopts region proposal network (RPN) to achieve excel-
lent performance. Although Faster R-CNN is powerful enough to tackle
the roadmarking detection problem, the inference speed is a fatal short-
coming since the road marking detection task requires real-time
processing speed. On the other hand, the current state-of-the-art detec-
tion framework like Single Shot Detector (SSD) [3] and You Only Look
Once (YOLO) [4] can be inferenced in real-time and still robust for
road marking detection tasks. As we all know, the key issue for those
deep learningmethods to perform robust detection under various envi-
ronments is a large and diverse training dataset. Besides, these real-time
object detectors are hard to balance the recall and precision due to a
predefined threshold used for distinguishing object proposals from
non-object proposals. If we set a low threshold, the recall of the detec-
tion frameworkmay increasewith the dropping precision due to the in-
creasing false negative proposals.

In addition, the deep learning methods are extremely data-driven,
which means the performance of the deep learning object detector
highly relies on the quality and quantity of its corresponding training
dataset. Unfortunately, the available public dataset for roadmarking de-
tection and classification is limited. For instance, The RoadMarking De-
tection dataset [5] contained 1,403 images labeled with 11 classes, in
which all images were taken during sunny days with clear view. The
network might encounter the problem of overfitting to the particular
environment if we trained a network on the Road Marking Detection
dataset [5].

In this research, we present a new road marking dataset for road
markings detection since there are no proper public datasets. The
dataset is collected under various weather and illumination conditions
in urban scene by a dashboard camera inside the windshield. The im-
ages are manually labeled into 13 classes with bounding boxes. Besides,
we also propose a two-stage network to perform real-time detection of
distorted road markings on the road. In the first stage, we modify the
YOLOv2 [6] detection framework to fit our road marking detection
task and producemore object proposals to increase the recall. In the sec-
ond stage, we propose a lightweight transformation-invariant road
marking classification network (RM-Net) to reclassify those uncertain
samples from the first stage to increase the precision. The concept and
flowchart of our road marking detection network is illustrated in
Fig. 1. The experimental results show that the proposed network out-
performs other baseline detection frameworks like Faster R-CNN in
the road marking detection task.
2. Related work

The roadmarking detection is an important part of Intelligent Trans-
portation Systems (ITS) [7]. Many works that focus on this topic come
up with their solutions. We briefly review existing works on the road
marking detection from RGB images.
2.1. RM detection based on ROI and handcrafted features

Most existing methods rely on a pre-defined Region of Interest
(ROI). Vacek et al. [8] and Suhr et al. [9] applied ROI in RM detection.
In other words, these methods assumed that the RMs only appeared
in some specific area, like the middle of the current driving lane. How-
ever, RMs lying on the left lane and right lane were also important for
drivers. In addition to the ROI, Vacek et al. [8] took advantage of five
pre-defined template RMs. Thereby, the detection could be done
throughmatching each candidate to thefive templates. Suhr et al. [9] in-
vestigated the horizontal projection for RM detection. They applied His-
togram of Oriented Gradients (HOG) [10] to extract features from the
road marking candidates. The authors then classified the road marking
candidates by total error rate (TER) -based classifiers [11]. Nevertheless,
it could only deal with the case that RMs were in front of the current
driving lane and lacked the flexibility of identifying distorted RMs. In
general, these methods based on handcrafted features might be



Table 1
Number of frames in our dataset. The dataset is composed of different combinations of
weather conditions.

Time Total frames

Daytime Without rain 7,344
Rain 1,456

Night without rain 2,133
Rain 867

Total 11,800

Fig. 2. Thirteen classes of the presented road marking dataset including the background.
Each class is composed of various angles and suffers from distortions.
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influenced by different angles of view or suffered from severe perspec-
tive distortion. In this work, we exploit convolutional neural networks
to automatically define the types of features required for RMs.

2.2. RM detection based on inverse perspective mapping (IPM)

IPM is a commonmethod in those low-level feature-basedmethods.
Through IPM transformation, the perspective distortions can be well
suppressed due to different angles of view and perspective. Besides,
IPM is used for rectifying the original image and generating the bird's-
eye view of a road. Liu et al. [12] performed IPM transformation to sup-
press the perspective distortion of input images. On top of IPM, several
pre-defined road marking templates were used for performing sliding
window to generate roadmarking candidate regions frombinarized im-
ages created by bright slice extraction. To classify the roadmarking can-
didate regions, the author used ELM Classifier [13], which was a
machine learning method with high training speed and suitable for
multi-category classification tasks [14]. Ouerhani et al. [15] captured
images from the VIAPIX acquisition module. The IPM method was ap-
plied to remove the perspective distortion of a road. In this paper, the
author used color segmentation to get the object proposals under the
assumption that all road markings were painted white. The HOG fea-
tures and Support Vector Machine (SVM) [16] were applied to perform
the final classification. Bailo et al. [17] also applied IPM to generate
bird's-eye view before object proposals. In addition to IPM, the image
was further transformed to gray image and the contrast was enhanced
by Contrast-Limited Adaptive Histogram Equalization (CLAHE) [18] in
order to remove the differences between contrasts in the image. Maxi-
mally Stable Extremal Regions (MSER) [19] was exploited to generate
object proposals from enhanced image. The PCA network (PCANet)
[20]wasmanipulated to encode each object proposal to a feature vector
and the SVMclassifierwas utilized to get the classification results. How-
ever, the camera parameters for IPMwere not fixed due to the different
mounting positions of the dashboard camera despite it was an effective
method to suppress perspective distortion. Our network differs from
them by using the presented transformation-invariant network.

2.3. RM detection based on deep learning

The deep learning methods, such as CNN, usually outperform the
traditional computer vision methods on object detection. Chen el al.
[30] proposes a framework to carry out object classification by using
binarized normed gradient (BING) [31] and PCA network (PCANet).
Lee et al. [21] proposed a multi-task network for lane segmentation
and roadmarking detection. This network took advantages of vanishing
points to let the network learnmore global information,which however
required expensive computations. Ourwork shows how to achieve a ro-
bust RM detection in real time.

3. Our dataset with distorted RMs

As deep learning methods are mostly data-driven, it is important to
train the deep learning network in a large-scale datasetwith various cir-
cumstances. Themodelmight over fit to the particular cases if the train-
ing data are lack of variety. Therefore, we collect a new dataset for the
public use of road marking detection and classification under various
roads, illuminations and weather conditions. The dataset is obtained
during different time of a day with different weather conditions. The
number of frames of the proposed dataset is shown in Table 1.

We mount the dashboard camera inside the vehicle to protect it
from rain. Our dataset is mainly composed of urban scene. The original
image resolution recorded by the dashboard camera is 2,560 × 1,440,
and the frame rate is 25 frames per second. We extract 10 images
every second randomly from the video and resize the image resolution
to 1,920 × 1,080. Furthermore, the dataset contains all the locations of
bounding boxes of every road marking with the corresponding class
labels.

The presented dataset totally consists of 11,800 images collected
under different time and weather conditions. These images are manu-
ally labeled into 13 classes with object bounding boxes as shown in
Fig. 2. Additionally, we crop the road markings from the images based
on bounding box information.

Table 2 lists the object numbers of each class in our dataset. Besides,
we randomly crop 4,389 backgroundproposals labeledwith “Other”. Al-
though our dataset contains common road markings which can be
found on the road, the imbalance of different classes is still existed.
The road markings of class “Forward” appear the most frequently
while class “Left Forward Right” appears rarely.
4. The proposed deep learning network

Traditional hand-crafted feature-based methods are generally lim-
ited to fitting some particular situations. Using a deep CNN training for
a diverse large-scale dataset is a popular solution. Hence, a two-stage
deep learning-based method to perform robust and real-time road
marking detection on urban roads is proposed to deal with such prob-
lem. In the first stage, we present a YOLOv2-based detection framework
to perform initial road marking detection of the input images with high
recall in real-time. Each object proposal in this stage contains not only
the coordinates of bounding boxes but also the corresponding



Table 2
Number of road marking objects.

Classes Proposals

Left 1,651
Forward 7,525
Right 990
Left forward right 74
Speed limit 30 560
Speed Limit 40 408
Speed limit 50 1,155
Forward left 1,846
Forward right 2,712
Left right 108
Special lane 293
Slow 577
Motorcycle waiting zone 2,060
Other 4,389

Fig. 3. Anchor box clustering using k-means. (a) relationship between number of clusters
and the IOU of generated bounding boxes and the ground truth. (b) result of 8 anchor
boxes and (c) the corresponding clusters which are visualized by TSNE.
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confidences and class confidences, which are used for distinguishing
uncertain samples from the other ones.

In the second stage, we present a novelty lightweight
transformation-invariant road marking classification network
(RM-Net) to reclassify the uncertain samples from the first stage.
Through adding the RM-Net, the constraints are loosening by setting a
low predefined threshold in the first stage. To the best of our knowl-
edge, this paper is the first work that decomposes road marking detec-
tion task into two stages, in which the coarse outcomes are obtained
firstly and the precise results are produced afterwards. By this way,
the recall is increased from the first stage due to large amounts of pro-
posals are generated. In case that too many false positives occur thus
impacting the precision, the second stage is designed to eliminate
false positives while maintaining high recall. As a result, the proposed
novelty network can get high recall from the first stage and high preci-
sion from the second stage thus reaching the balance between these
two metrics. The overall performance will also be benefited from the
presented two-stage architecture.

4.1. Road marking detection stage

There are mainly two categories of detection frameworks. The first
category of detection frameworks inherits from the famous work
R-CNN [22] such as the Faster R-CNN [1]. Those detection frameworks
are usually called two-stage detection frameworks, which generate re-
gion proposals firstly and then classify those region proposals properly.
For example, the Faster R-CNN uses Region Proposal Network (RPN) to
generate possible object regions from the input image. After the ROI
pooling, those region proposals become a fixed size latent feature vec-
tor. In the end, the fully connected layer is used for generating the
bounding box location and class. Although the Faster R-CNN is a state-
of-the-art two-stage detection framework, the inference speed is its
major disadvantage. If we want to apply deep learning-based detection
framework to tasks like the ADAS or the road marking detection, the
real-time inference speed is crucial.

Another category of detection framework only uses a single CNN to
simultaneously predictmultiple bounding boxes and the corresponding
classes, which will be referred as a single shot detection framework.
YOLOv2 is the state-of-the-art single shot detection framework. The
most important feature of this kind of detection framework is the real-
time inference speed. Moreover, the YOLOv2 detection framework
outperforms the Faster R-CNN in both mean average precision and in-
ference speed.

Inspired by the principle of the single shot detection framework
YOLOv2, we construct our first stage in consideration of the importance
of real-time inference speed in ADAS or self-driving system. The input
image of our network is the front view of the dashboard camera. We
adopt the darknet [23] as the feature extractor. The darknet is a deep
CNN with 23 down-sample convolution layers designed to extract
high level features from the input image. In addition, it is faster and
more accurate than vanilla VGG network.

It is noteworthy that the anchor box is an important mechanism for
YOLOv2 to achieve high recall. The anchor boxes are pre-defined, which
can be regarded as an initial prediction on grid cells to predict the
bounding boxes and their classes better. Specifically, the pre-defined
scale and aspect ratios of the anchor boxes fit the object bounding
boxes more, the higher performance can be achieved. In the region pro-
posal network of Faster R-CNN, the scale and aspect ratios are manually
picked, which is not accurate enough. Inspired by the anchor boxes se-
lection method in YOLOv2, we use the dimension cluster to select the
most appropriate scale and aspect ratios for the anchor boxes instead
of choosing them manually. The k-means clustering method is per-
formed on the bounding boxes of the training set in our proposed
roadmarking detection dataset to empirically calculate the best anchor
boxes. Notably, if we use standard k-means with Euclidean distance,
larger bounding boxes lead to larger error than smaller boxes. Hence,
the distance equation in k-means is based on the Intersection over
Union (IoU) score as shown in Eq. (1).

d box; centroidð Þ ¼ 1−IoU box; centroidð Þ ð1Þ

We run k-means algorithm for various values of k and calculate the
average IoU with closest centroid. The result is shown in Fig. 3(a). We
choose k as 8 to achieve high recall in the first stage empirically while
keeping a reasonable real-time inference speed of the network. We
can make the IoU reach 0.79 between generated anchor boxes and the
ground truth in our road marking detection dataset when k equals to
8. In Fig. 3(b), 8 anchor boxes generated by k-means cluster algorithm
are illustrated.

Each anchor box takes a responsibility for predicting the potential
bounding box information and the corresponding class. The bounding
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box information is represented by 5 scalars of tx, ty, tw, th and to, where tx,
ty, tw and th denote the bounding box coordinates, and to represents the
bounding box confidence. The location coordinates of bounding boxes
are predicted with respect to the location of the grid cell. In other
words, the network predicts 5 scalars of the bounding box information
based on each cell in the output feature map. If the top left corner of an
anchor box A with height and width Ah, Aw located at (Ax,Ay) of the
image, the prediction result of this anchor box can be calculated by
Eq. (2).

bx ¼ σ txð Þ þ Ax

by ¼ σ txð Þ þ Ay

bw ¼ Awetw

bh ¼ Ahe
th ð2Þ

where bx, by, bw and bh are the center coordinates and the size of the
bounding box, and σ is the sigmoid function which can be written as
Eq. (3):

sigmoid xð Þ ¼ ⅇx

ⅇx þ 1
ð3Þ

Eight anchor boxes are produced here. By combining the bounding
box location prediction with the location of each anchor box, the train-
ing process of the network can be faster and more stable.

The final output dimension of the first stage is (NC +5) × NA, where
NC denotes the number of classes and NA is the number of anchors. In
our work, NC = 13, NA = 8. After investigating the detection results of
the first stage, several problems are then revealed. For instance, the sin-
gle shot detection framework lacks classes of background. In fact, the
background is filtered by the bounding box confidence score. The confi-
dence score can be written as following Eq. (4):

Pr objectð Þ � IoU b;objectð Þ ¼ σ toð Þ ð4Þ

In other words, it reflects how confident the box contains an object.
If the confidence score of the predicted bounding box is lower than the
threshold, the predicted bounding box will be considered as the back-
ground and thus being ignored. The class prediction is generated by
the softmax function, where the softmax function is defined as Eq. (5):
Fig. 4. Architecture of RM-Net. We crop the predicted road marking based on the first stage fro
transformer is used for dealing with the distortion of road marking.
softmaxi ¼
ⅇVi

Σ jⅇV j
ð5Þ

The class corresponding to themaximum softmax value is the result
of class prediction. Besides, we observed that the predicted bounding
box confidence score and the class confidence score vary greatly
under different road environments and angles of view. These facts
often lead to a prediction with low confidence. Those predictions with
low confidence usually are either false positive samples or incorrect re-
sults of class prediction. Thus, we have to design a second stage aiming
to refine the detection results of our first stage.

4.2. Road marking classification stage

Object detection ismore complicated than object classification, since
the former takes the whole image as an input whereas the latter only
takes a part of an image as its inputs. The results of detection are com-
posed of both the object location information and the corresponding
class. It means that the object detection framework firstly predicts
where the possible objects are located in the image and then classifies
the object region to a corresponding class. Thus, the object classification
can be handled by rather a small network comparing to the detection
task.

As a result, we design a lightweight transformation-invariant road
marking classification network (RM-Net) in the second stage to resolve
the bottlenecks of the detection framework in the first stage. Mean-
while, the proposed RM-Net in the second stage can also reclassify
those uncertain samples from the first stage to increase the accuracy.
The architecture of the RM-Net is shown in Fig. 4.

It is not difficult to classify roadmarkings due to their plain color and
distinguishable shape. The truly hard part for road marking classifica-
tion is the severe perspective distortion caused by various angles of
view. As shown in Fig. 5, although these four figures belong to two clas-
ses, roadmarkings under different angles of view are totally with differ-
ent appearance. IPM is a commonmethod used in traditional computer
vision-based works to eliminate the perspective distortion. IPM takes
camera parameters to generate bird's-eye view of the road before fur-
ther detection methods like template matching algorithm or horizontal
projection process. However, in real-world application, camera param-
eters are not fixed due to different dashboard cameras, mounting posi-
tions and angles of view caused by car shaking. These factors lead to
totally different camera parameters. That is the reason why IPM is not
a robust method for road marking detection in real-world application.
m the original image and use it as an input of the second stage. Inspired by [24], a spatial



Fig. 5. Same road markings under different angles of view.
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A general CNN is composed of convolution layers and max-pooling
layers. These layers are used for extracting the latent feature from the
input image. The down-sampling progress is able to get slight spatial in-
variance property due to the fact that the max-pooling layer only keeps
the most important feature of the previous feature map. Although CNN
has slight spatial invariance, still, it's not actually invariant to serious
transformation of the input image.

Inspired by [24], we design a spatial transformer layer before
convolutional layers in order to perform rectification of the input
image to suppress the deformation caused by various angles of view.
The spatial transformer layer is a differentiable module, thus the RM-
Net can perform end-to-end trainingwith back propagation. The spatial
transformer layer can learn suitable transformation for each input
image to make the classification more accurate.

The spatial transformer layer is composed of three main compo-
nents, namely localization network, grid generator and sampler. The lo-
calization network is a fully convolutional neural network with two
convolutional andmax-pooling layers. The input of the localization net-
work is the possible road marking region proposal cropped from the
original high-resolution image based on the bounding box coordinates
from the first stage. The reason why we crop the road marking region
proposals from the original high-resolution images is that the input im-
ageswill be resized to 416× 416 pixels before it is fed into the detection
network. If we crop the road marking patch from the 416 × 416 pixels
image, the information of the cropped image is too poor. By cropping
the road marking image from the original high-resolution image with
1920 × 1080 pixels, more fine-grained information can be preserved.
Additionally, we also resize the input image size of the second stage to
96 × 96 pixels to reduce the computational cost. As shown in Fig.4,
the output θ of the localization network is composed of 6 parameters
for affine transformation of the grid generator.

The grid generator takes the 6 parameters to generate a gird of
points. These points present where the input image pixel should be
sampled to create the transformed output image. In the end, the sam-
pler takes the input image and the sampling grid to produce the output
image, which is sampled from the input image by grid points.

After the spatial transformer layer, the rectified image array is fed to
the followed convolutional and max-pooling layers of the RM-Net to
generate feature map which contains high level feature of the input
road marking image for classification. We have chosen different filter
sizes to extract features of the input roadmarking image and concluded
that larger filter size performs better than a smaller filter size. Compar-
ing to the smaller filter size, the larger filter size corresponds to a larger
receptive field, which means more context information will be consid-
ered. In this work, we select 7 × 7, 5 × 5 and 3 × 3 filter sizes for the
convolutional layers.

The Pooling layers in the convolutional neural network are often
used for summarizing the most important feature from the feature
map. The traditional max-pooling usually set the kernel size equal to
the strides. For example, most of the time, the traditional max-pooling
layer sets the kernel size = 2 and strides = 2. The pooling strategies
we used in our RM-Net set the kernel size = 3 and strides = 2, which
can consider more information between neighbor regions.
The aforementioned convolutional layers and the max-pooling
layers are used for extracting high level feature from the input image.
The final feature map will be flattened and then fed into the fully con-
nected layers to generate the final class prediction.

The convolutional layers and max-pooling layers of the proposed
RM-Net can be divided into three blocks. The first block contains one
convolutional layer and one max-pooling layer, while the second and
the third block contain two convolutional layers and one max-pooling
layer.

The spatial transformer layer is a differentiable module, which not
only transforms the input image but also can be applied to the mid-
level feature map to perform transformation on the feature map. As
we known, the spatial transformer layer adopted for road marking de-
tection did not appear in the literature yet. To validate its effectiveness,
this paper applies the spatial transformer layer to the RM-Net as well as
presents six different architectures of the RM-Net as shown in Fig.7 to
explore the potential novelty of the RM-Net. Instead of directly adding
the spatial transformer layer to the presented RM-Net, an additional ex-
periment was given to prove the improvement of the overall perfor-
mance reflecting on the layer which applies to the different depth of
the proposed network.

As demonstrated in Fig. 6, we select six different architectures by
adding the spatial transformer layers into different parts of the network.
The RM-Net-Zero network architecture uses normal CNN without spa-
tial transformer layer; the RM-Net-One network architecture only per-
forms spatial transformer layer to the input image. RM-Net-Two and
RM-Net-Three network architectures apply spatial transformer
layer to the input and one of the convolutional blocks. However, the
RM-Net-Four network architecture applies spatial transformer layer
after convolutional block1 and convolutional block 2, which means
the spatial transformer layer only performs spatial transform to the
mid-level featuremap of the input image. The RM-Net-Five network ar-
chitecture uses spatial transformer layer to transformboth input images
and the mid-level feature map.

We find out that the RM-Net-One achieves the highest accuracy in
road marking classification task empirically. Thereby, we pick out the
RM-Net-One architecture as the final version to perform road marking
classification in the second stage.

4.3. Implementation of our two-stage network

In this subsection, we are going to describe the implementation is-
sues of our two-stage detection network. The architecture of our two-
stage road marking detection network is shown in Fig. 6.

Wemodify the output of each anchor box in the first stage based on
YOLOv2 by adding the maximum class prediction confidence and pre-
dict the class label to generate a new vector. Themaximumclass predic-
tion confidence is created by the softmax function. In addition, we also
transform the location coordinates of the bounding box from input
size 416 × 416 pixels to the original size 1920 × 1080 pixels in order
to crop the high-resolution roadmarking proposals for the second clas-
sification stage.

Themodified input vector in the second stage can be represented by
7 scalars of Bx, By, Bw, Bh, Bc, Pc and Pl. Bx, By, Bw, Bh and Bcdenote the
bounding box information and the corresponding confidence, respec-
tively. Scalars Pc and Pl represent the class confidence and the predicted
class label respectively.

The RM-Net in the second stage focuses on reclassifying the uncer-
tain samples from the first stage, rather than reclassifying all the road
marking proposals from the first stage. Only those uncertain samples
are reclassified, which can save a lot of computational cost. We choose
a predefined threshold α for Bc and Pc from the modified output of the
first stage to distinguish certain samples and uncertain samples. Once
the value Bc or Pc is lower than the threshold α in the output vector,
we crop the uncertain road marking proposals from high-resolution
image based on the predicted bounding box coordinates and employ



Fig. 6. Detailed architecture of our two-stage road marking detection system.
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Fig. 7. Different architectures of RM-Net. We added spatial transformer into these
RM-Nets in various combinations with different internal layers as well as blocks and
concluded that (b) outperforms the others.

7X.-Y. Ye et al. / Image and Vision Computing 102 (2020) 103978
the RM-Net to reclassify the classification result. The predicted class of
the second stage will replace the uncertain class prediction in the first
stage. On the other hand, if values Bc and Pc from the first stage are
greater than the threshold, our network directly considers it as final de-
tection results and skips the second stage at all to save computational
cost.
5. Experiments

Our network is trained and tested on personal computer with single
NVIDIA GTX 1070 GPU, Intel Core i7–2600 3.4GHz CPU, 64G memory,
and Ubuntu 16.04 operation system. We implement our method
based on PyTorch, which is an open-source project for deep learning
framework currently maintained by Facebook. PyTorch integrates
NVIDIA Cuda and cudnn toolkit, which allows us to utilize stronger
GPU acceleration. Our model is trained and tested by using Cuda 9.0
and cudnn 7 with PyTorch 0.4.0.
5.1. Experimental results of the RM-Net

The proposed RM-Net is a lightweight transformation-invariant
road marking classification network, which is used for reclassifying un-
certain samples from the first stage. The input of the RM-Net is a road
marking object proposal while the output of RM-Net is one of the 13
classes of road marking or the background labeled as “Other”. Before
the image is fed into the RM-Net, we resize the cropped image to
96 × 96 pixels and data argumentation to generate more diverse data
to enhance the robustness and to prevent from overfitting. We imple-
ment data argumentation by adding random rotation to the input
image with degree −20° to 20°. Despite the fact that our dataset con-
tains various road marking samples with different angles of view, the
random rotation is still a good way to increase the diversity of the
data. On top of that, we randomly change the brightness, contrast and
saturation of the input image to simulate the real-world condition.



Table 3
Experimental results of different RM-Net architectures.

Network Accuracy

RM-Net-Zero 97.07%
RM-Net-One 97.60%
RM-Net-Two 97.35%
RM-Net-Three 97.36%
RM-Net-Four 97.22%
RM-Net-Five 97.46%
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To explore the inference of spatial transformer layers in different
part of the feature, we design six network architectures. We train
these network architectures on our road marking classification dataset
with 300 iterations until convergence and compare the overall classifi-
cation accuracy. The experimental results are shown in Table 3. We
find out that applying spatial transformer layer to the input image
achieves the best classification performance.

Also, we train the RM-Net using Adam on our roadmarking classifi-
cation dataset with 300 iterations and batch size 32. Adam is an optimi-
zation algorithm like stochastic gradient descent to update network
weights iteratively based on the training data. For comparison, we
train several classification networks like AlexNet [25], MobileNetv2
[26] and VGG16 [27] as baseline models. The AlexNet is the champion
of the ILSVRC-2012 competition while the MobileNetv2 is a new archi-
tecture proposed byGoogle. VGG16 is a popular feature extractorwhich
has been widely used in many detection frameworks. The input size of
all three networks is 224 × 224 pixels, whereas the other training pa-
rameters remain the same as those of the RM-Net.

Furthermore, we implement two simple classifiers used in recent
roadmarkingdetectionworks [28]. The formerwork uses thehistogram
of oriented gradients (HOG), and the support vectormachines (SVM) to
classify road marking images and the latter work uses a shallow CNN
network modified from LeNet [29] called LeNet96CP2. The two methods
are also compared with our RM-Net on the road marking classification
dataset.

Table 4 shows that the proposed RM-Net achieves the best classifica-
tion accuracy of 97.6% mAP in the road marking classification task in
comparison with other state-of-the-art networks. Note that the overall
performance is concluded in the red italic column shown in Table 4 as
Table 4
Classification results on our road marking dataset. Best results are highlighted in bold.

Method All Left Forward Right L-F-R F-L F-R L-

Ours 97.6 97.9 98.7 96.8 100 96.8 98.7 10
AlexNet [25] 96.2 94.4 97.9 94.0 100 97.8 97.5 10
MobileNetv2 [26] 97.0 97.5 98.5 94.0 100 96.8 98.0 95
VGG16 [27] 97.4 97.5 98.7 96.1 100 97.6 98.8 10
HOG+SVM [12] 81.2 79.6 91.3 72.6 88.9 85.4 88.3 65
LeNet96CP2[13] 88.8 86.7 96.7 83.5 94.4 90.4 94.4 69

Table 5
Detection results on our road marking detection dataset. Best results are highlighted in bold.

Method All Left Forward Right L-F-R F-L F-R

Ours 86.3 84.3 87.6 78.5 100 90.0 88.9
Faster R-CNN [1] 81.5 77.6 87.4 71.3 95.7 88.8 90.0
SSD 80.7 79.8 87.4 63.5 94.1 83.5 85.7
YOLOv2 (Darknet) 82.4 79.8 81.7 70.0 99.5 88.9 88.2
YOLOV2 (Restnet50) 79.0 78.9 85.4 69.7 89.6 89.1 89.6
YOLOV2 (Tiny) 75.5 76.2 75.9 68.0 98.6 86.7 87.5
well as summarized from all classes in the dataset used in Table 4.
Due to successful combining the spatial transformer layers, the pro-
posed RM-Net effectively tackle the distortion problem, which is a
main issue existed in the real-world scenarios. As the RM-Net is de-
signed for solving the distortion problem in this work, we did not add
the spatial transformer layer in other compared networks. However,
the future work is encouraged to combine with other networks to
further evaluate the potential effectiveness of the proposed RM-Net in
this area of various applications.
5.2. Experimental results of the detection network

The proposed two-stage real-time road marking detection network
is evaluated on our dataset. On top of that, we train two well-known
real-time detection frameworks YOLOv2 and SSD as baseline models
to compare with our network. Besides, the state-of-the-art of two
stage detection framework Faster-RCNN is adopted to compare with
our network.

Themean average precision (mAP) is used for evaluating the perfor-
mance of the proposed two-stage roadmarking detection network. The
prediction is considered as true positive if the bounding box overlap-
ping rate between the prediction and the ground truth is greater than
0.5. The average precision for each class is also calculated. The experi-
mental results are shown in Table 5. The best average precision of
each class and mean average precision are marked with boldface. The
result shows that our proposed two-stage road marking detection net-
work achieves 86.3%mAP, which outperforms any other versions of de-
tection frameworks. Besides, the overall performance of our proposed
network achieves a significant improvement of at least 3.9% (86.3% -
82.4%) mAP in comparison with others as shown in Table 5. The contri-
bution comes from our proposed network can deal with the distortion
of the road makings, while others suffer from this annoying challenge.
It is interesting to see that the one-stage YOLO-v2-based methods out-
perform two-stage Faster R-CNN in this case. In fact, Yolo-v2 [6] indeed
announced higher mAP than the Faster R-CNN on Pascal VOC 2007
benchmark. Accordingly, it is the spatial transformer layer in the pro-
posed two-stage network effectively contributes the performance im-
provement instead of the primitive two-stage architecture itself.
Additionally, our network is capable of performing real-time road
R 30 40 50 Special Lane Slow Motorcycle zone Other

0 94.3 98.5 97.4 98.4 93.8 99.0 89.1
0 91.7 97.7 95.3 98.4 90.1 96.0 88.8
.7 94.3 97.7 98.6 99.2 90.7 98.5 83.3
0 95.8 93.9 97.7 99.2 90.7 97.0 91.3
.2 47.4 42.7 71.5 82.0 65.8 79.6 71.2
.6 67.7 70.2 87.4 82.8 77.0 86.1 63.5

L-R 30 40 50 Special Lane Slow Motorcycle zone

98.1 75.0 86.3 88.6 87.0 80.1 77.0
88.0 72.8 81.8 81.0 79.4 78.0 67.6
85.4 64.8 79.5 82.4 87.1 74.1 82.1
94.5 74.6 80.6 86.1 80.1 73.9 71.0
94.7 62.7 73.9 82.8 75.6 67.3 67.8
86.7 61.1 69.0 77.2 66.9 63.1 64.7



Fig. 8. The Precision-Recall curves of different road marking detection networks.

Fig. 9. The ratios of mispredictions in the first stagewhich can be correctly classified in the
second stage.

Table 7
Ablation on RM-Net.

Approach mAP

w/o RM-Net 82.4
w/ RM-Net 86.3
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marking detection as well as handling the second challenge of different
illuminations and weather conditions based on the presented datasets.

Fig. 8 shows the precision-recall curve of our two-stage road mark-
ing detection network and other detection frameworks on our road
marking detection dataset. The result verifies that the proposed two-
stage roadmarking detection network outperforms any other detection
frameworks. Through the effect of RM-Net, the proposed framework is
able to eliminate the false positive proposals caused by low confidence
threshold and still maintains high precision.

We compare the inference time between the proposed two-stage
road marking detection network and other detection frameworks. The
inference time is measured on our road marking detection dataset im-
ages with 416 × 416 pixels input image size of the network. We take
the average inference time of each image in the test set of our dataset
for comparison. The results are summarized in Table 6. The computing
speed of our network is significantly faster than other two-stage detec-
tion frameworks and comparablewith other one-stage detection frame-
works. It only takes 0.017 s for two-stage network to perform accurate
road marking detection of a single image. Besides, we investigate that
the number of incorrect class predictions of the first stage can be cor-
rectly re-classified in the second stage. As shown in Fig. 9, more than
half wrong predictions can be correctly predicted by RM-net.

5.3. Ablation study

The RM-Net is a key component of the proposed two-stage real-time
road marking detection network and is employed to reclassify those
samples whose confidence scores are lower than the specific threshold
in the first stage. It can handle the distortion problem which might be
the culprit of low performance. Since there are tremendous distorted
Table 6
Comparison of inference time with other detection frameworks.

Approach Stage Inference Time

Ours Two-stage 0.017 s
Faster R-CNN Two-stage 0.072 s
SSD One-stage 0.024 s
YOLOv2(Darknet19) One-stage 0.015 s
YOLOv2(Resnet50) One-stage 0.016 s
YOLOv2(Tiny) One-stage 0.007 s
road markings in real-world scenarios, the spatial transformer layer in
the RM-Net is essential to handle such kind of task. The proposed
RM-Net and the spatial transformer layer are tightly bounded together
to meet with application requirements and to effectively accomplish
the entire performance improvement. To estimate its contribution to
performance, we train the entire network with/without RM-Net, re-
spectively, to give an ablation study. The dataset set here we used is
the same as the one for the detection task.

Table 7 shows that adding RM-Net obtains a significant improve-
ment of 3.9% (86.3% - 82.4%) mAP. This is in our expectation because
with the support of spatial transformer layers embedded in RM-Net,
the objects are more likely to be detected from different angles of view.

6. Conclusions

We propose a YOLOv2-based two-stage real-time road marking de-
tection network. Our two-stage roadmarking detection network solves
several bottlenecks of the proposal-free detection frameworks by en-
hancing the recall of the first stage and reclassifying the predictions
with low confidence. The first stage of our detection network is based
on YOLOv2 with some key improvements. Each object proposal in the
first stage contains bounding box confidence and class confidence,
which are used for distinguishing the uncertain samples from
the certain ones. In the second stage, we design a lightweight
transformation-invariant road marking classification network
(RM-Net) to reclassify the samples with relatively low confidence to
further increase the precision. Besides, we present a dataset for
distorted road marking detection and classification with more than
eleven thousand high-resolution images captured under various illumi-
nations and weather conditions.

The experiments are performed on our road marking detection and
classification datasets. We evaluate RM-Net on the roadmarking classi-
fication dataset. The RM-Net achieves 97.5% overall accuracy, which is
higher than the traditional classification methods and other CNN
based classification networks. On the other hand, the presented
two-stage road marking detection network achieves 86.5% mAP,
which outperforms current real-time detection frameworks. Our exper-
imental results demonstrate that the proposed network is able to per-
form real-time detection under extreme conditions. As a great deal of
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convolutional neural networks have been developed nowadays, in our
future work, the proposed RM-Net will be further integrated with dif-
ferent kinds of backbone networks to verify the consistency of their
outperformances, from lightweight architecture such as MobileNet, to
heavy structure like ResNext-101.
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