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Hand Pose Estimation aims to predict the position of joints on a hand from an image, and it has become
popular because of the emergence of VR/AR/MR technology. Nevertheless, an issue surfaces when trying
to achieve this goal, since a hand tends to cause self-occlusion or external occlusion easily as it interacts
with external objects. As a result, there have been many projects dedicated to this field for a better solu-
tion of this problem. This paper develops a system that accurately estimates a hand pose in 3D space
using depth images for VR applications. We propose a data-driven approach of training a deep learning
model for hand pose estimation with object interaction. In the convolutional neural network (CNN) train-
ing procedure, we design a skeleton-difference loss function, which effectively can learn the physical con-
straints of a hand. Also, we propose an object-manipulating loss function, which considers knowledge of
the hand-object interaction, to enhance performance.
In the experiments we have conducted for hand pose estimation under different conditions, the results

validate the robustness and the performance of our system and show that our method is able to predict
the joints more accurately in challenging environmental settings. Such appealing results may be attrib-
uted to the consideration of the physical joint relationship as well as object information, which in turn
can be applied to future VR/AR/MR systems for more natural experience.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, hand pose estimation has become one of the most
attractive topics in the computer vision field as its application to
plenty of innovative techniques, such as Virtual Reality (VR), Aug-
mented Reality (AR), Mixed Reality (MR), and Human-Computer
Interaction (HCI), have gained popularity. Development of power-
ful devices in VR/AR/MR, such as Microsoft HoloLens, HTC VIVE,
or PlayStation VR, has made interaction between human hands
and virtual objects possible. In addition, cameras capable of captur-
ing depth images have been invented, and there are some accessi-
ble commercial depth cameras, such as Kinect or Intel RealSense,
providing the depth stream. With the depth information, one can
not only take advantage of the spatial relationship embedded in
the image but also transform the pixel-wise depth value to the
actual 3D geometry in a space. This important invention offers
potential improvement for solving problems that strongly rely on
the 3D relationship. From then on, joint prediction studies, such
as human pose estimation and hand pose estimation, have
flourished.

In real-world applications, we have many opportunities for
using our hands holding objects, which means there will be lots
of hand-object interactions, and we still need to find the proper
hand pose in such cases. Current works about hand pose estima-
tion focus on bare hands only, which means the research has been
done only for estimating hand poses in a simple environment with-
out considering other complex conditions. In this paper, we discuss
hand-object interaction via two cases. The first case is manipulat-
ing a virtual object, which is equivalent to estimating the hand
pose only. As there are few articles claiming to address the condi-
tion with hand-object interactions, the datasets of this field do not
contain the manipulation setting (i.e. the grasping pose, the pinch-
ing pose, and so on). The other case is interacting with a real object,
which can exist in partly VR, AR, or MR applications. Imagine a sce-
nario where, in a virtual scene, one would like to hold a cup to
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drink coffee. This task can be straightforward if we just make a vir-
tual cup for him/her. Nevertheless, as emphasized in VR/AR/MR,
being natural is the top priority, which gives the reason we have
come up with the idea to have real objects be involved in the whole
system. Moreover, we think hand-object interaction information
can provide some knowledge for the hand pose estimation since
people get used to manipulating objects with certain poses in nor-
mal cases. Hence, we design a hand pose estimation system that
considers hand-object interaction, and we expect the system will
enhance quality of life by combining VR applications with the real
world for remote control, education, and so on.

Many researchers have spent a lot of effort on this intriguing
topic; however, hand pose estimation itself is still a fairly challeng-
ing problem. As we already know, a human hand normally has 5
fingers, each of which contains two to three joints, and these fin-
gers are able to move with different rotations and bends simulta-
neously. Observing the highly dynamic shapes of various poses
performed, one of the difficulties of estimation is that a hand is
far from being a rigid body, so every one of its configurations is
highly articulated, which makes validation of the reconstructed
hand model extremely difficult. Also, hand poses easily can change
from one to another within very short time period. For example,
the facts that the transition from clenching one’s fist to opening
one’s hand can be very rapid and is conducted frequently in daily
life make reconstruction difficult, let alone the fact that every indi-
vidual finger may bend and straighten at any time, which increases
the difficulty of the above task. Due to such high variation, tradi-
tional tracking methods fail to perform well in solving this tough
problem.

Furthermore, when it comes to imaging, occlusion is a common
issue, which means that we may not be able to access the informa-
tion from the input source and that we have to use limited infor-
mation to achieve the goal of hand pose estimation. Due to the
complex configuration of a hand (i.e. fingers), parts of a hand tend
to block each other from the view of the camera, which is quite
common when capturing hand images. If a certain part of a hand
is occluded by another part, we call it self-occlusion. When some
difficult poses are performed, such as clenching one’s fists, self-
occlusion will arise severely. Self-occlusion occurs even when
there is only one hand in an image, which is quite frequent when
various poses are performed. If the camera’s view is egocentric,
which means from first person’s view, related to the AR/VR appli-
cations, say, when one is wearing a camera on his/her head, we
notice that the fingertips are self-occluded by the palm since the
palm will be the nearest part with respect to the camera. As we
have mentioned, we must solve this problem first if we want to
integrate this system into VR/AR/MR devices.

Since our target is to estimate a hand pose interaction with an
object, there is another occlusion problem caused by external
objects. This case makes the information less sufficient since hands
are blocked directly, and sometimes we even have to describe the
shape of the objects to calculate how large the area of occlusion is.
As mentioned in [1], this kind of occlusion is almost inevitable
when one’s hand manipulates objects or holds an object tightly
in his/her hand with natural poses because the object is likely to
be located in the middle of the hand. Among all the poses, holding
an object with one’s hand being open is a rare case in daily life.

The occlusion problem caused by the existence of external
objects deteriorates even more from the first person’s view, and
Fig. 1 illustrates some examples of hands in interaction with exter-
nal objects. We also notice that, while interacting with objects, the
depth pixels of hands and of objects will be connected, which is
one of the reasons normal hand pose estimation systems cannot
work perfectly under this condition. The research in [2] pointed
out that straightforward combination of methods for object
approach and for hand approach does not lead to satisfactory solu-
tions. Some articles try to simplify hand pose estimation with
object interaction to normal hand pose estimation. For instance,
in [3], the authors segment the image first to obtain the pixels of
the object, remove those parts from the image, and leave only hand
pixels for the following hand pose estimation process. Neverthe-
less, this method can only work for cases where occlusion is not
severe, or almost all the depth values will be subtracted completely
with no information left.

Although hand pose estimation with object interaction faces
many challenges, the conditions apparently are inevitable for
real-world applications. In pursuit of good quality hand pose esti-
mation, it is necessary to overcome the obstacles that prevent us
from achieving the goal. In this paper, we will provide a novel
architecture for hand pose estimation that aims to solve the esti-
mation problem under hand-object interaction conditions, which
are especially challenging since the environment becomes more
complex. Our target is to integrate this technique with VR devices
like Head-Mounting Devices (HMD) and reconstruct a hand in the
VR world, which will provide connection between the real world
and VR world. Since the application we have mentioned will
include many hand-object interactions, it turns out that the
method of hand pose estimation we design can improve the rota-
tion performance under this condition, and such promising results
will be illustrated towards the last part of the paper.
2. Related work

In recent years, the accomplishments of hand pose estimation
have been numerous, given that there has been considerable
research dedicated to this field. In this section, we will introduce
the research relevant to this paper. There are three parts, including
object detection, normal hand pose estimation, and hand pose esti-
mation with object interaction. We will describe each of them in
the following sections.
2.1. Object detection

Object detection is the most important and the most popular
field in computer vision, and there have been many works propos-
ing a variety of architectures to improve performance. In this sec-
tion, we explain the object detection approaches based on
convolutional neural networks (CNN), which is employed as a com-
ponent in this paper. Convolutional neural network, a network pre-
sented by Krizhevsky et al. [1], dramatically increases the accuracy
of object classification, and its efficiency is enhanced considerably
by the advancement in GPU technology, which is recognized as the
key to CNN. Afterwards, with diverse designs of network architec-
ture, CNN also has been proven to increase performance dramati-
cally; thus, it has been employed in a variety of computer vision
tasks was the pioneer in exploiting CNN [5] for object detection,
using selective search [6] as the region proposal method. Some
researchers, however, soon noticed that some redundant computa-
tion could be saved, leading to the proposals of [7] and [8]. The two
architectures extract regions of interest (ROI) on the feature map,
of which the latter is famous for the ROI pooling layer. In [9], the
authors replaced selective search, which could not be implemented
on a GPU, with another GPU accelerated architecture, which led to
the design of region proposal network (RPN). Such architecture,
namely, faster R-CNN, attains great accuracy and efficiency, and
it has been employed in various object detection tasks. Nonethe-
less, some later works, such as [10] and [11], present excellent
architectures for solving a few disadvantages of faster R-CNN.
Recently, [12] employed a structure based on faster R-CNN,
proposing a fully-convolutional network approach that generates
position-sensitive score maps and exploits the spatial relationship



Fig. 1. Some examples of hand-object interaction images. In these depth images, we can see that either the hand or the object tends to be occluded by the other, and the
pixels of both may connect together at some points. The object types in the figure are defined as (a) cube, (b) ball, and (c) cup.
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on the feature map to obtain the desired ROI. This modification
greatly enhances the efficiency of object detection as compared
with that of faster R-CNN and shows promising performance,
which motivates us to apply this architecture in our object detec-
tion part.
2.2. Hand pose estimation

Hand pose estimation is one specific regression problem in
computer vision, and its development forms a long history. There
have been numerous considerably different solutions to date, and
there is no method that seems to dominate this field. The conven-
tional optimization approach based on a good algorithm and a
data-driven approach like deep learning alternate in showing per-
formance improvement every year.

For the sake of clear explanation, we share some articles in this
field that take advantage of CNN first. In [13], the authors created
heat maps to perform pose recovery with inverse kinematics. In
the process of recovering the depth image, a CNN is exploited for
dense feature extraction, and the obtained heat map is a prototype
of hand pose estimation. In [14], the feedback loop architecture of a
CNN was proposed to estimate the 3D pose and an outstanding
result with excellent efficiency was shown. It is an entirely data-
driven approach, whose core is to iteratively correct mistakes. In
[15], an architecture was introduced that is composed of multiple
CNNs used to refine every joint by the cropped region of multi-
scales and to iteratively approach the best prediction. In [16], a
multi-stream CNN was proposed to cope with the multi-view
problem with depth image and fuse the heat map from different
views to estimate the positions of the joints. Also, Sinha et al.
[17] proposed a two-stage CNN where one CNN in the first stage
is expected to globally estimate the primary hand pose. In [18], a
whole architecture was built with CNN where hand detection, as
well as hand pose estimation, share the convolutional layers. That
work next divides the pose into small parts, of which each part has
one local hand pose regressor. To show its performance, it is tested
through experiments on a public dataset and another synthetic
dataset. Ge et al.[34] designed real-time 3D hand pose estimation
from single depth images using 3D Convolutional Neural Networks
(CNNs). Their method achieved 10 mm precision over a public
dataset using Mean Euclidean Distance Error as the evaluation
metric. In [20], a spherical part model (SPM) was employed to
enhance the effect of the training model, and the approach was
verified to be efficient and to show great performance. In [36], it
demonstrates a steady growth of the research in real-time 3D hand
pose estimation. As many researchers have confirmed the power of
the CNN for this regression problem, we also turn to a CNN as our
basic architecture in this paper.

Besides CNN, physical constraints of a hand are taken into con-
sideration in many works since a hand is distinctly partitioned and
the relationship of joints in a part is strong. Some researchers have
combined the hierarchy property and the model-based approach
(e.g. Predict the palm first, then predict fingers) to achieve better
performance. Sun et al. [21] proposed a cascaded scheme to train
multiple regressors for palm and finger, and the performance is
excellent in their experimental results. Tang et al. [22] presented
the Latent Regression Forest that predicts starting from the root
(i.e. the palm joint) to the leaves (i.e. the fingertips) and optimizes
each result in every step. The same group introduced a hierarchical
sampling optimization approach in [23], which iteratively opti-
mizes the hand configurations in each layer to obtain the final
pose. Some works also combine CNN with a hierarchical strategy,
such as [17,19], which were shown later to work very well. Wan
et al. [33] introduced the method of pose parameterization to esti-
mate an offset vector between depth points and hand joints, which
makes the estimate translation-invariant and also generalizes to
different combinations of finger poses.
2.3. Hand pose estimation with object interaction

Hand Pose Estimation involving object interaction is a relatively
rare topic in computer vision, and someof the existing literature,
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such as [24], whose resulting system is designed for robots, just
pays more attention to object poses. Only a few works so far have
focused on hand pose estimation while manipulating objects,
which is significant for future applications. In [25], an RGB-
image-based nearest neighbor search method was introduced for
hand-tracking. In [1], the occlusion problem was introduced in
hand-object interaction and a multidimensional optimization
approach was proposed for hand-object pose estimation (HOPE)
based on particle-swamp-optimization (PSO). That work claims
to be the first to demonstrate that hand-object interaction can be
exploited as a context to facilitate hand pose estimation. It also
conducts experiments on synthetic data to discover the difference
between HOPE and pose estimation of hands in isolation (PEHI),
which refers to normal hand pose estimation methods. In [26],
three kinds of trackers for two hand articulated tracking and object
tracking were analyzed, and the proposed ensemble of Collabora-
tive Trackers (ECT) for RGB-D images was shown to be able to
get high accuracy. Pham et al. [27] observed hand-objection inter-
actions and showed force sensing from vision (FSV), which helps
judge the cases of interaction. In [3,28], both methods scan hands
and objects in interaction into point clouds to reconstruct their 3D
shapes, with the advantage of estimation of the model of unknown
objects. In [29], a method was proposed for hand tracking in vari-
ous kinds of interactions and detecting the salient points on fin-
gers. Sridhar et al. [2] proposed a real-time approach that tracks
hand and object at the same time from RGB-D input source, and
they designed a Gaussian Mixture Model representation for a
depth map of hands and objects. Their method turns out to be effi-
cient and shows improved performance. As for [29], only fingertip
points instead of the whole hand pose were predicted, and the data
used in that work contains only simple interaction. [39,39] propose
their solutions based on hand-object interaction which are
restricted to daily hand actions involving objects. However, there
are still missing various kind of 3D hand poses. [37] provides gen-
erative methods for hand-object interaction activity, only focusing
on virtual objects.

To summarize the survey above, only a few employ RGB-D
input images and a majority of them take pure depth image as
their input sources.
3. Hand pose estimation in hand-object interaction

In this section, we will describe in details how we design this
approach for the hand pose estimation in Hand-Object Interaction
system.

As in [2] and [3], a lot of procedures have been done before the
pose of hands and the objects are estimated. In order to explain our
development more clearly, we divide it into two stages respec-
tively with two levels of difficulties, namely, ‘without object-
interaction’ and ‘with object-interaction’. In the following sequel,
we will elaborate the scheme for the former case in 3.1, which is
the fundamental to this research work, and then exploit it as the
basis for the latter case to be revealed in 3.2, which matches the
settings closer to real-world application, so as to develop a more
practical system.
Fig. 2. The defined 16 joints in this thesis. Each finger has three joints from the
palm to the fingertip.
3.1. Hand pose estimation using SDNet

Hand pose estimation is to predict the correct position of each
hand joint on the image. In this section, we focus on normal hand
pose estimation, which is the problem setting the same as that for
pose estimation of hands in isolation (PEHI) in [1], since it is the
fundamental work to which most researches previous articles are
dedicated. The architecture we hereby propose so called
skeleton-difference network (SDNet), which contains a novel loss
function, namely, skeleton-difference loss function, for training in
order to consider the physical constraints as well as properties of
a hand. We elaborate each step to finish this task. Given a raw
image from a depth image sensor, we have to preprocess this data
to be the input of the next stage, hand detection, where we detect
the bounding box of a hand. Then, we crop the hand according the
bounding box result of hand detection, and put it as the input to
hand pose estimation stage. Through our proposed SDNet, we
can successfully predict the positions of hand joints. We employ
deep learning approaches, CNN, for both hand detection and hand
pose estimation. We will describe in details the architecture in the
following sub-sections.
3.1.1. Data preprocessing
For training the CNN net for hand pose estimation, we first crop

the hand region. We set a bounding box from the ground truth
label. The labels contain 16 joints on each hand defined by us,
which are illustrated in Fig. 2. We use the center of palm joint P
and the most inner joint of middle finger M1 as the hand center,
crop the bounding box on the image with the method as in [20].
The edge length of the bounding box is 25 mm in real-world space,
and adjust it to a bit bigger if any of other joints exceed this region.
After cropping, we can use the RoIs to training our network. The 3D
bounding box is also able to crop out the depth value so that the
image can be well normalized.
3.1.2. Hand detection
Before doing hand pose estimation, cropping a hand out is sig-

nificant since it determines the quality of the input image for the
next stage. The architecture we employed is based on RFCN [12],
which adds a layer called position-sensitive RoI-pooling layer to
retrieve the position information of region of interest (RoI), and
adopts a fully convolutional scheme. Our network is based on ZF-
net [30] to leverage its accuracy and efficiency, but we modify it
to fit the architecture of RFCN. Our detection framework is illus-
trated in Fig. 3. In the first five layers, we take the pre-trained
model on ImageNet [4] dataset, fine-tune it, and finally train the
two added convolutional layers.

This detector is able to detect four classes, including ‘hand,’
‘mug,’ ‘cube,’ and ‘ball,’ and output bounding boxes of the detected
hand and other objects. Notwithstanding, the CNN of hand pose
estimation demands a fixed input size of 224 � 224 pixels since
there are fully-connected layers in the network. Therefore, we
choose the long edge as the new width and height of the new
bounding box. Then, we crop the new image to an aspect ratio of
1:1 and resize it to 224 � 224 to be the input for the next CNN.



Fig. 3. Our fundamental detection architecture. The detection framework is based on RFCN [12] and the network we employ is ZF-Net [31].

Fig. 4. The illustration of the two loss terms in skeleton-difference loss function. (a)
Shows how to compute angular loss. The black angles are ground truth angles in a
finger while the red ones are estimated angles, where the angular loss represents
the difference. (b) Demonstrates the three bone lengths in one finger, and the bone
length ratio is the ratio of the neighboring two bones’ lengths. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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3.1.3. Skeleton-difference loss function
In a normal process for hand pose estimation, only direct depth

appearance is taken into consideration, but there are supposed to
be some physical constraints to help predict joints. Therefore, we
design a loss function, namely skeleton-difference loss function,
to model the feasibility of a hand pose.

The structure of the defined skeleton also is shown in Fig. 2. In
the skeleton-difference loss function, we compute the loss
throughout every bone in the structure, and the loss is derived as
follows:

WSD ¼ aLossa þ bLossb ð1Þ
The equation includes two terms which indicate the angle loss

term and the bone loss term, respectively, while a and b are the
weights of two terms, respectively. The first term represents the
angular loss, explaining the angle between two bones, and conse-
quently it is derived as:

Lossa ¼
X5
p¼1

X2
l¼1

ðx1 tan
hp;l
2

� hGTp;l
2

 !�����
�����þx2Fðhp;lÞÞ ð2Þ

where

hp;l ¼ cos�1 Bp;l � Bp;lþ1

kBp;lkkBp;lþ1k
� �

ð3Þ

F hð Þ ¼ 1; h � threshold

0; else

�
ð4Þ

Here, p is the part number out of 5 fingers on a hand, l is the
angle number depending on how many angles we have on a finger,
Bi is the vector between two joints (i.e. from jointi to jointiþ1, which
means jointi is closer to the palm, and jointiþ1 is farther) in each
part, and hi is an angle between the two vectors Bi and Biþ1 while
xk is a weight. F hð Þ is a function aiming to measure the feasibility
of the estimated angle, and if an angle is greater or smaller than a
threshold (e.g. no smaller than 50 degrees in our experiments), it
will suffer an additional penalty to suggest the natural bending
of a specific hand finger. Fig. 4(a) illustrates how to calculate the
angular loss. In Eq. (2), a predicted angle will between 0 and 90
degrees after divided by 2, and the difference of the two angles will
between �90 to 90 degrees. Then we use tangent function to
reflect bigger loss for a larger angle difference.

The other loss term of this loss function is the bone length loss,
also demonstrated in Fig. 4(b), and it is as defined below:
Lossb ¼
XP
p¼1

XL
l¼0

kGp;l � GGT
p;l k ð5Þ

where

Gm;n ¼ ð kBm;nþ1k
kBm;nk þ kBm;nþ1kÞ ð6Þ

Here, Bm;n means the vector between joint n and joint nþ 1 in
part m, which can be physically regarded as one bone. This loss
reflects the difference of predicted bone length and ground truth
bone length, but we use length ratio instead. The bone ratio is
the ratio of two neighboring bone lengths, which can overcome
scale problems to be scale-invariant. Fig. 4(b) illustrates the bone
vector in a hand pose.

3.2. Hand pose estimation in hand-object interaction

In 3.1, our SDNet is able to estimate a hand pose when no exter-
nal objects intervene. In this section, the research problem of hand
pose estimation is now promoted to an upper level, which means
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the estimation needs to proceed for a situation where the hand
manipulates some objects. When the impact of objects is consid-
ered, the difficulty of the estimation task dramatically rises since
there will be a large proportion of a hand region occluded by exter-
nal objects. Normally, the methods presented in previous works as
well as our proposed approach described in 3.1 will have better
reconstruction of a hand pose as the information from a frame is
more sufficient, which means the occlusion problem in hand-
object interaction will probably lead to a disaster for those meth-
ods. On the other hand, since some sources of the input image
are missing, we ought to look for another additional clues to com-
pensate the lost information. From the observation and the experi-
ence of daily life, we assume that people interacts with a certain
object with some specific and natural hand poses, which we expect
to find out, and that’s the relations of the so-called interaction.
Therefore, we try to form the relationship between a hand and
an object when the former is manipulating the latter, and combine
this knowledge into the hand pose estimation task. Likewise, we
rely on CNN as our basic structure and design a multi-CNNs
approach to solve the task. In the following sub-sections, we will
first explain the network structure of the system, then talk about
how we define the contact between a hand and an object, and
finally describe the proposed object-manipulation layer based on
Gaussian Mixture Model (GMM) that aims to enhance the perfor-
mance of our deep learning process.

3.2.1. System structure overview
The basic idea of the system structure in this section is similar

to what we have described in 3.1, where we can divide the whole
procedure into two major stages, detection and hand pose estima-
tion, but there are some modifications for both two parts. For
detection in this section, the primary difference is that we detect
not only hands but also objects in input depth frames. The detec-
tion architecture we employ here is the same as that introduced
in 3.1.2, which is also R-FCN framework from [12]. Depending on
howmany objects we want to detect, we have cþ 1 classes in total
for our task, which means the hand and other c of objects. The
details of the detection processes can be referred to 3.1.2. Note that
the ‘object’ we will mention in the following articles will refer to
‘object type’ in order to generalize our model, which means those
objects with similar shapes or similar functions will be categorized
into the same ‘object type’.

For hand pose estimation part here, we employ a multi-CNNs
hand pose estimation structure in order to take various object
types with which a hand is interacting into consideration. We
use deep learning way to train one CNN model for one type of
objects with the object-manipulation model for each, and the
detail of training can be found in 3.2.3. Besides, the original hand
pose estimation model (i.e. SDNet) is also contained for the case
when no object exists in the image to make sure that every frame
is properly predicted. Hence, there will be cþ 1 CNNs included in
this stage, and for any input frame being processed in this system,
it will choose one CNN to predict its final hand pose estimation
result according to what object the hand is interacting with. The
whole structure of system is as illustrated in Fig. 5, which can
reveal the whole testing process. Besides the two stages mentioned
above, there is also one crucial component that determines the
contact status of a hand and an object when interaction is going
to occur, which will later be explained in 3.2.2. Given a raw depth
frame from the camera, we can obtain the predicted 3D positions
of each joint on a hand, which form a hand pose, after the two
stages.

3.2.2. Hand-object contact status estimation
To pick the proper hand pose estimation model of the next

stage, we ought to find out what is the object hand is manipulating
or is about to manipulate. To estimate whether a hand and an
object start to interact, we use a function to achieve the goal. The
definition, namely, interacting score, of the function is derived as
follows:

contact dið Þ ¼ True; ifX rh;i; ro;i
� �

is true

False; else

(
ð7Þ

where di is the depth frame, rh;i and ro;i denote the cropped
hand and object region obtained from detector. Xð�; �Þ is the over-
lapping estimation function. These functions are defined as below:

X r1; r2ð Þ ¼ True; Hðr1; r2Þ > 0
False; else

�
ð8Þ

where Hð�; �Þ denotes the intersection area of regions r1 and r2, and
when the two regions overlap, the overlapping estimation function
will be true as in Fig. 6.

3.2.3. Object-manipulation loss function
Object-manipulation loss function is a loss function for increas-

ing hand pose estimation performance. We need to find a model
that is capable of memorizing all the possible hand poses that
are in interacting status. Thus, we use Gaussian Mixture Model
(GMM) to model the hand poses in interaction.

First, we divide a hand into five parts, as shown in Fig. 7. Then,
we calculate the relations between each finger and the object con-
tact center, which is the point manually labeled on the surface of
an object. The predicted joint will recognize this reference point
as an object, and we can model the spatial relationship between
hand and object. Fig. 8 shows different object contact centers of
each object.

where Hð�; �Þ denotes the intersection area of regions r1 and r2,
and when the two regions overlap, the overlapping estimation
function will be true as in Fig. 6.

The function works when the bounding boxes of a hand and an
object intersect each other; otherwise it will return ‘no object con-
tact’. The contact status estimation is simple and straightforward.
Though the function cannot work perfectly to judge the timing of
contact, this is just an estimation, and there are indeed some cases
when the estimation is wrong. However, these cases do not bother
us too much because of two reasons. First, we train the interacting
model with the frames including the cases whenever a hand is
close enough to an object. Second, in the next stage, all the hand
pose estimation models are able to provide a reasonable prediction
basically, and if a frame whose contact status belongs to true but it
is estimated as false, it will choose the other models that offer a bit
less accurate but still acceptable result. Overall, it tolerates some
errors, but moderate accuracy can still be expected.

We then transform the spatial relations into our object-
manipulation representation, as in Fig. 9. Each part has one repre-
sentation, and the representation T J;p for part p from a joint set J is
defined as below:

T J;p ¼ ðhp;1; hp;2; hp;3Þ ð9Þ
where hk is defined as the angle between two vectors. As the

hand structure shown in Fig. 9., the first one is the vector from
the object contact center to palm center, while the second one is
the vector from the object contact center to the joint on the part
p. There are three joints in each part, so the three angles are com-
bined as a new representation, which is able to reflect a natural
pose that may exist when a finger is interacting with an object,
and our job is to collect all the rational poses with GMM and to find
their distribution. In [20], the works have confirmed that GMM can
be a reliable data-driven method to model the probability of sam-
ples among a complex distribution. Following the idea of these
papers, we use the representations from training data as training



Fig. 5. The whole architecture of our hand pose estimation system, which consists of three main components: detection, contact status estimation and joint regressor stage.
In joint regressor stage, the estimation will depend on what kind of object type the hand is interacting, whose status is determined by the contact status estimation. The mug,
cube and ball here are three types of objects.

Fig. 6. The overlap of the two bounding boxes of the object and the hand,
respectively. The bounding boxes are from the previous stage of detection.

Fig. 7. We divide the hand into 5 parts, each of which has three joints. One part
corresponds to one finger. Furthermore, the hand palm is also defined to be in the
layer 0, while layer 1 to layer 3 is defined as the joints of each finger from the palm
to the fingertips. That is, the five fingertips belong to layer 3.
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samples for GMM by EM algorithm, and the expected distribution
will be accessed. The number of Gaussian distribution is 3. We
obtain five GMMs from five parts, and each GMM is able to predict
a score of assembling the distribution given a new sample. That is,
the score can offer the rationality of a new hand pose. Therefore,
we take this idea into the training process of CNN, and becomes
a new loss function, namely object-manipulation loss function,
and the loss WOMð�Þ is derived as following:
WOMðJÞ ¼
X5
p¼1

1
SðT J;p;GMMpÞ ð10Þ

where J denotes the predicted joint set in the training process, and
Sð�; �Þ offers the evaluated score of joint set J given by GMMp, which
is the GMM for part p. We use inverse to transform the score into
loss and sum the loss of every part. Then our training architecture
will include the joint loss function, skeleton-difference loss function
and object-manipulation loss function, and we can construct the
CNN training process as illustrated in Fig. 10, which considers Eucli-
dean loss, physical constraints of a hand pose itself and the rational-
ity of a manipulating hand pose. Eventually, the total loss of the
CNN training procedure will be consequently derived as following:

WTotal ¼ WD þxSDWSD þxOMWOM ð11Þ

where xSD and xOM are the weights of the two individual loss
functions.

In the formula above, if no object involves, the model will be
trained with the first two terms, which are Euclidean loss function
and skeleton-difference loss function, respectively. On the other
hand, if hand-object interaction is considered, the third term,
object-manipulation loss function, will be added. For one object
type, we train a CNN, which serves all objects of similar kinds
instead of a specialized object. We believe that a similar type of
objects will be held by the similar hand poses, which can be com-
mon in our daily life. People always use the similar hand poses to
take, to hold and to manipulate stuff of a certain shape. What’s
more, when some occlusion appears or some parts are invisible
owing to an object or the hand itself, the skeleton-difference loss
function and the object-manipulation loss function are able to pre-
dict a reasonable and natural result from our assumption of natural
hand poses. Using the models trained from the whole architecture,
we can predict a hand pose directly from an input depth frame.

In the training process of the dataset involving dataset, we use
the model that is pre-trained on public dataset without hand-
object interaction, and then fine-tune this model on the frames
including hand-object interaction. By doing so, the knowledge of
the hand pose can be maintained and transferred to the new data.
4. Experimental results

In this section, we will explain the experiments of our hand
pose estimation system, including the conditions of a single hand



Table 1
The Specification of our machine for experiments.

Equipment Specification

Central Processing Unit (CPU) Intel Core i5-6500 @3.20 GHz
Random Access Memory (RAM) 24.0 GB
Graphic Processing Unit (GPU) NVIDIA GeForce GTX 980
Operating System (OS) Microsoft Win 10
System Bit Type 64 bit

Fig. 8. The object contact center of different object types, which are (a) cube, (b) ball and (c) cup, respectively. An object contact center normally will be labeled at the center
of an object’s main body.

Fig. 9. The illustration of transformation from one finger joint into object-
manipulation representation. One angle of this representation is the angle between
two vectors from the object contact center.
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pose estimation or hand pose estimation in interaction with
objects.

4.1. Environmental settings

The experiments of our whole system are conducted on a PC.
Table 1 shows some details of the hardware specification of this
computer. As for implementation of convolutional neural network
Fig. 10. The flowchart of the training process. Given the training data, we can retrieve th
via the back-propagation from the loss layers. There are three loss functions, including the
and the object-manipulation loss function.
(CNN), we employ Caffe [31] library as our deep-learning toolbox.
For both detection and hand pose estimation, we implement the
system with the python version of Caffe.
4.2. Datasets

We use two public datasets, ICVL Hand Posture Dataset [22] and
NYU Hand Pose Dataset [13]. We also make a dataset ourselves,
namely NTU Hand-Object Interaction Dataset, to evaluate the per-
formance of our hand pose estimation in object interaction. We
will talk about the contents and the properties of the three individ-
ual datasets in the following sections.
4.3. ICVL hand posture dataset

ICVL Hand Posture Dataset [22] is a public dataset released by
Imperial Computer Vision & Learning Lab (ICVL). There are about
22,000 images in the training set and 1596 testing frames captured
by Intel Creative depth sensor. In the dataset, a hand in each indi-
vidual frame is annotated with 3D positions of the hand joints in
e predicted joint positions from the CNN, and we update the parameters of the CNN
conventional Euclidean distance loss function, the skeleton-difference loss function



Fig. 13. We integrate a depth sensor (Intel RealSense F200) with a VR device (HTC
Vive). We want to construct a hand in virtual world through our hand pose
estimation system.

Table 2
The frame number of each class in NTU hand-object dataset.

Object class Training frames Testing frames

Bare hand 2214 246
Mug 1289 143
Cube 1858 206
Ball 890 98
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the image space and its depth (i.e. (u, v, d)). There are 16 joints
annotated on each frame, as shown in Fig. 11 shows some exam-
ples in this dataset.

4.4. NYU hand pose dataset

NYU Hand Pose Dataset is a public dataset released by NYU that
contains 8252 test-set and 72,757 training-set frames captured by
Microsoft Kinect [32]. The frames were collected as RGB-D from
third person’s view of three viewpoints and are labeled with
ground-truth annotations of hand-pose information. Some exam-
ples are shown in Fig. 12.

4.5. First-Person Hand Action (FPHA) dataset

First-Person Hand Action (FPHA) dataset [38] is one publicly
available dataset at the time for 3D hand-object interaction recog-
nition that contains labels for 3D hand pose, 6D object pose and
action categories. The dataset contains 1175 videos belonging to
45 different activity categories performed by 6 actors in 3 different
scenarios - kitchen, office and social. A total of 105,459 RGB-D
frames are annotated with accurate hand poses and action cate-
gories. A subset of the dataset contains annotations for objects’
6-dimensional poses along with corresponding mesh models for
4 objects involving 10 different action categories. This subset of
the dataset is denoted as FPHA hand-object dataset.

4.6. NTU hand-object interaction dataset

This dataset, which is captured by Intel RealSense [35] depth
sensor, is a new dataset created by our own for evaluating our
hand-object interaction model. The image source includes depth
frames and RGB frames that are captured from the egocentric view
(i.e. first-person’s view) to simulate the camera on a Head-
Mounted Display (HMD) as in the setting of Fig. 13, and accord-
ingly can be utilized in further RGB-D hand pose estimation
researches or activity recognition researches, and we use only
depth source in our following experiments in this thesis. It cur-
rently has 7 video sequences in conditions of a bare hand or a hand
that is manipulating different objects, including the mug, the ball
and the cube. The frame number of this dataset is listed in Table 2.
Fig. 11. Some examples in NYU Hand Pose Dataset [32]. This dat

Fig. 12. Four frames in ICVL Hand Posture Dataset [13]. This dataset contains man
For the frames in this dataset, we have manually annotated the
bounding box of objects, the 3D position of object contact centers
which are used for training our object-manipulation model, and
the 3D position of 16 hand joints as defined in Fig. 7. To annotate
aset contains many images that have serious broken pieces.

y challenging hand poses. These images are normalized to be well presented.



Fig. 14. Some examples of annotated frames in NTU hand-object dataset. The four classes are (a) bare hand, (b) mug, (c) cube, and (d) ball.

Fig 15. The successful pose estimation fraction of a full hand under the threshold
compared with other papers [20–22] on ICVL Hand Posture Dataset.

Fig. 16. Some examples of our predicted results (upper row) and of [22] (lower row) on ICVL Hand Posture Dataset. (a)–(c) Our estimated hand poses have better performance
than other works even in some difficult cases, such as severe occlusions, and the poses maintain good shape. (d) and (e) Even in some challenging poses, our prediction result
may not be absolutely accurate, but our method still makes a hand pose complete and natural.

Fig. 17. The samples of detection results from our hand detector on NYU Hand Pose
Dataset.

Table 3
The result of SDNet and comparisons with previous works on ICVL Hand Posture
Dataset.

Method Average Euclidean Distance Error (mm)

Cascaded [21] 9.800
SPM [20] 8.649
LRF [22] 13.433
Ours (SDNet) 8.452

Table 4
The comparison of setting different weights to skeleton-difference layer. The baseline
uses the CNN of [30] without additional knowledge. The weight of Euclidean loss
function is set to be 1 and is adjusted to different weights of our skeleton-difference
loss function (SDNet).

Network settings (weight, xSD) Mean Euclidean Distance Error (mm)

Baseline 12.6990
SDNet (0.125) 8.8209
SDNet (0.25) 8.7291
SDNet (0.5) 8.4520
SDNet (1) 8.5104
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Fig. 18. The average Euclidean Error of each joint. We compare our results (SDNet) with Spatial Attention DeepNet [19], Feedback Loop [14], SPM [20], and our baseline that
uses simple CNN architecture on NYU Hand Pose Dataset.

Fig. 19. The examples of prediction results on NYU Hand Pose Dataset.

Table 5
Comparisons with previous works on NYU Hand Pose Dataset.

Method Average Euclidean Distance Error (mm)

Feedback Loop [14] 15.972
SPM [20] 15.909
Spatial Attention DeepNet [19] 23.149
Ours (SDNet) 15.286
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the positions in 3D space from 2D depth image frames, we first
transform a depth frame into visualized point cloud frame to label
the z-axis value of a joint.

The frames in some sequence of this dataset contain a lot of
hand-object interaction, which means external occlusions may
occur in many frames. Basically, we assume that these invisible
joints will be located at some feasible positions and will form a nat-
ural hand pose. Moreover, in order to overcome the problem, we use
some rules to enhance quality of annotations. First, an annotated
hand pose is supposed to be thought as rational and natural by a
human annotator, and we can infer the position of invisible joints
from the visible joints. And also, the shape and the appearance of
the manipulating objects, which are rigid body, can be helpful for
the annotation as well. Secondly, our data are continuous frames,
so we can annotate the joints from its previous frame. We initialize
the annotations of a new frame with the previous labeled frame,
and then adjust the position minor. Third, when frames have been
annotated, we will calculate the bone lengths, which means the dis-
tance between two neighboring joints, and choose out the poses that
contain abnormal bone length to have them re-annotated.

The image frames in this dataset are captured in some very chal-
lenging conditions of hand-object interaction such as holding it and
rotating it, some of which contain many occlusions. Though this data-
setmay be too difficult for some researches, the purpose of this dataset
is to set in the real-world conditions as much as possible. Some exam-
ples of annotated frames in this dataset are shown in Fig. 14.

4.7. Results

4.7.1.1. ICVL hand posture dataset In this dataset, we compare our
experimental results with the previous state-of-the-art papers
[20–22] and the baseline shown in Table 3 for evaluation of the
average Euclidean distance error. Our method performs better than
the other three papers in almost all the joints, which verifies that
our overall prediction is more accurate.

Fig. 15 show that the comparison in the fraction under thresh-
old evaluation, and we have a remarkable enhancement. From the



Fig. 20. The successful pose estimation fraction of a full hand under the threshold compared with other papers [14,19,20] on NYU Hand Pose Dataset.
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figure provided in [21], their mean Euclidean distance error is
about 9.8 mm while ours is 8.45 mm. Nevertheless, the results in
Fig. 16 confirm that our predicted hand poses can be maintained
in good shape since we impose the relations between joints on
our model. Fig. 16 demonstrates the completeness of our estimated
hand pose. We compare the predicted results with [22], and we see
that their estimated pose can be highly distorted from time to time,
while ours is quite natural and intact in shape.

Moreover, Table 4 demonstrates the importance of skeleton-
difference loss function with those physical constraints. We set
the weight of Euclidean distance error to be 1 and adjust to differ-
ent weights of skeleton-difference loss function (i.e. SDNet). We
Fig. 21. Comparison of the hand pose estimation results of our work with those of
Garcia-Hernando et al. [38] Tekin et al. [39] on FPHA hand-object dataset.
notice that, as the weight of skeleton-difference loss function
increases, the performance becomes better.

4.7.1.2. NYU hand pose dataset. We evaluate our method on the
testing-set of NYU Hand Pose Dataset as well. Fig. 17 shows some
examples of the predicted bounding box from our detector of NYU
Hand Pose Dataset. Notice that we do not expect to resize or distort
the bounding box since we need to forward it to the next stage (i.e.
Hand pose estimation), so we try to predict the region of interest
(RoI) as a square.
Table 6
The detection result of our hand and object detector on
FPHA hand-object dataset.

Class Average precision

Hand 0.916
Mug 0.889
Cube 0.931
Ball 0.798
Mean 0.8835

Table 7
The class mapping between FPHA hand-object dataset
and Object Class detection for our model.

Object class (NTU) Action category (FPHA)

Cube close_milk
close_juice_bottle
close_liquid_soap
open_milk
open_juice_milk
open_liquid_soap
pour_juice_bottle
pour_liquid_soap

Mug pour_milk
Ball put_salt



Fig. 22. Error detection happens on FPHA hand-object dataset.

Table 8
The detection result of our hand and object detector on
NTU hand-object dataset.

Class Average precision

Hand 0.9520
Mug 0.9005
Cube 0.7947
Ball 0.9445
Mean 0.8979
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We show our experimental results on NYU Hand Pose Dataset
and compare with the state-of-the-art works [14,19,20] from their
released statistics. We also set the same baseline as in the previous
section and make a comparison after the skeleton-difference layer
is joined. The results of average Euclidean distance are shown in
Fig. 18 and Table 5, and one can see that we achieve slightly better
results in the Euclidean distance error over previous papers. Fig. 19
shows some examples of results.

We can turn to Fig. 20 to observe the fraction of success, and in
this evaluation benchmark, Feedback Loop [14], SPM [20] and ours
are quite close.
4.7.1.3. FPHA hand-object dataset. We compare the accuracy of our
3D hand pose predictions to the state-of-the-art research [39,39]
on FPHA hand-object dataset in Fig. 21. Besides comparing 3D hand
pose predictions, we also do experiments to evaluate the perfor-
mance of this hand and object detector, Table 6. In order to create
a correlation between our detectable object class set and the action
category set used by the FPHA dataset, we have to map each of the
10 different action categories of the FPHA hand-object dataset to
one of our three object types – ‘mug’, ‘cube’ and ‘ball – nets,
Table 7.

Since our work is focusing on ‘right hand’ detection at the first
stage, some of the data from the FPHA dataset was not compatible
with our model. It failed to detect the object because two hands
were visible in the dataset and the model couldn’t decide which
was the correct hand, see Fig. 22. Since such errors decrease the
accuracy of our detection, so we exclude most of these edge cases.
In future work the system can be adapted to detect both hands. Our
work is designed to run in real-time and be less computationally
intensive than the compared research Garcia-Hernando et al. [38]
Tekin et al.[39].
4.7.1.4. NTU Hand-Object dataset. This dataset is made by ourselves
to evaluate the hand pose estimation when a hand is interacting
with objects. We choose three object types, including ‘mug’, ‘cube’
and ‘ball’ in our experiments, and we design some comparisons to
see the performance. Table 8 shows the performance of this hand
and object detector, and we can observe that all the classes per-
form quite well.

We also make some bare hand images to show the performance
of our SDNet on hand pose estimation. As with the previous two
public datasets, we employ two evaluations in comparison with
the baseline, and the results are shown in Fig. 23 and Fig. 24. This
can also show the improvement of our SDNet on every joint, and
the average Euclidean distance error of our SDNet model is
16.365 mm.



Fig. 23. The average Euclidean Error of each joint. We compare our results (SDNet) and the baseline that uses simple CNN architecture on NTU Hand-Object Dataset.

Fig. 24. The successful pose estimation fraction of a full hand under the threshold compared with the baseline on NTU Hand-Object Dataset.
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To illustrate the improvement of our method, we can test a data
sequence with three kinds of nets. The first one is a CNN without
additional knowledge to predict a hand pose based on depth frame.
The second one is SDNet, which considers the physical constraints
of a hand. We can regard the previous two as baseline, and com-
pare with the SDNet trained with object-manipulation loss



Fig. 25. Some examples of predicted results on NTU Hand-Object Dataset. The four classes are (a) bare hand, (b) mug, (c) cube, and (d) ball.

Fig. 26. Our system can be applied to HMD of VR devices.

Table 9
The Euclidean distance error of models on different objects in NTU Hand-Object
Dataset.

Object Class Model

Baseline SDNet SDNet + OML

Bare Hand 19.8416 mm 16.3651 mm –
Mug 10.5878 mm 10.5689 mm 8.3031 mm
Cube 20.4631 mm 18.2559 mm 15.2499 mm
Ball 16.1031 mm 12.8315 mm 11.0239 mm
Average 16.7489 mm 14.5054 mm 11.5256 mm
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function (OML), which takes the object knowledge into considera-
tion. We test these models on four classes of objects including
‘hand,’ ‘mug,’ ‘cube,’ and ‘ball,’ and the results are shown in Table 9.
The figure shows that, when more additional knowledge is taken
into consideration, the result is more likely to perform better.
Fig. 25 shows some examples of results.

Moreover, the detection stage, contact status estimation stage,
and joint regression stage takes about 20 ms, 0 ms, and 7 ms,
respectively, with our equipment, which shows this system can
run real-time and can be applied precisely to future applications,
as in Fig. 26. It shows the integration of depth sensor, Head-
Mounting Devices (HMD), and our hand pose estimation technique
in one system. Afterward, we can use our hand to interact with the
virtual world directly through the interface and no longer need
external controllers to achieve the goal of human–computer
interaction.

5. Conclusion

In this paper, we propose a novel system for 3D hand pose esti-
mation that can predict a human hand pose accurately from vision-
based frames. Moreover, either a bare hand or a hand manipulating
an external object can be estimated by this system. The experimen-
tal results conducted on several datasets show that our method not
only performs well but also is robust.

To achieve the goal of accurate and efficient hand pose estima-
tion in these challenging conditions, we designed a deep-learning
approach to train a convolutional neural network (CNN) model.
First, we developed a skeleton-difference layer that described the
physical constraints, such as angles of bones and lengths of a hand.
Second, we propose an object-manipulating layer that models the
relationship of hand-object interaction. In implementation, we
employ a Gaussian Mixture Model (GMM) to compute the distribu-
tion of the spatial relations between hand joints and objects and
add this knowledge into training the CNNmodel. With the two lay-
ers mentioned above, our CNN model is able to consider the
appearance of depth image and the physical constraints of a hand
and the hand-object interaction at the same time, so we can train
this model end-to-end. Moreover, with this model, we are able to
predict positions of the joints very efficiently.

The proposed system includes a hand-object detector and sev-
eral hand pose estimators for a bare hand and a hand in interaction
with other external objects. We compare the effect of those com-
ponents with other state-of-the-art papers, and see great improve-
ments over previous works and our designed baseline. Therefore,
the proposed system can be used in applications, such as Virtual
Reality (VR), Augmented Reality (AR), or Mixed Reality (MR), that
may highly rely on human’s hands as the natural communication
between a human and a computer in the future, and it can create
a convenient interface to improve our future daily life.
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